Mercurial > repos > siwaa > wine_quality_train_eval
view wine_quality_train_eval.xml.essaiNOK @ 6:51f36952ccaa draft
planemo upload for repository https://forgemia.inra.fr/nathalie.rousse/use/-/tree/dnn/DNN/galaxy-tools/wine_quality_train_eval commit e7c4e447552083db7eaecbdf139a7c359fe9becc-dirty
author | siwaa |
---|---|
date | Thu, 05 Dec 2024 11:45:31 +0000 |
parents | d490c7a4c63b |
children |
line wrap: on
line source
<tool id="wine_quality_train_eval" name="wine_quality_train_eval" version="1.0.0"> <description>wine_quality_train_eval</description> <requirements> <!-- singularity --> <container type="singularity">oras://registry.forgemia.inra.fr/nathalie.rousse/use/dnn_fidlemore:6d159f79349e231deadb738f79bd293c1a8dadd3</container> <!-- image locale <container type="singularity">/home/nrousse/workspace_git/SIWAA_regroup/USE_branch_dnn/use/DNN/containers/fidlemore.simg</container --> </requirements> <environment_variables> <environment_variable name="FIDLE_DATASETS_DIR">/fidle-tp/datasets-fidle</environment_variable> </environment_variables> <command detect_errors="aggressive"> <![CDATA[ . /fidle-tp/fidle-env/bin/activate; bash -e -c "mkdir cache_dir && mkdir mpl_dir && export TRANSFORMERS_CACHE=\$(realpath -s cache_dir) && export MPLCONFIGDIR=\$(realpath -s mpl_dir) && python3 /fidlemore/model_wine_lightning/wine_quality_train_eval.py -dataset_filepath ${dataset_csv} && cp OUTPUTS/model.ckpt ${model_ckpt} && cp OUTPUTS/norm_config.json ${norm_config_json} && cp OUTPUTS/report.json ${report_json}" ]]> </command> <inputs> <param name="dataset_csv" optional="true" type="data" format="csv" label="File of dataset used to train and test the model (.csv)"/> </inputs> <outputs> <data format="ckpt" name="model_ckpt" label="model_ckpt model file (.ckpt)"/> <data format="json" name="norm_config_json" label="norm_config normalization configuration (.json)"/> <data format="json" name="report_json" label="report (.json)"/> </outputs> <tests> </tests> <help><![CDATA[ wine_quality_train_eval.xml =========================== Code: ---- - wine_quality_train_eval.py Inputs: ------- - dataset file (.csv) : File containing dataset used to train and test the model. The dataset will be splitted in 2 parts (training part, validation part). If not given, an embedded default file used. Outputs: -------- - Model file (.ckpt) - Normalization configuration file (.json) - Report file (.json) Credits: -------- - Author: Nathalie Rousse nathalie.rousse@inrae.fr - Copyright: INRAE ]]> </help> </tool>