Mercurial > repos > siwaa > redelac_stics_t
diff config/inputs.csv @ 0:7f8f474a7bd7 draft
"planemo upload for repository https://forgemia.inra.fr/redelac commit 29a2aee3b41d8da4d056600ea5cf4af978c714b9"
author | siwaa |
---|---|
date | Tue, 06 Feb 2024 09:21:00 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/config/inputs.csv Tue Feb 06 09:21:00 2024 +0000 @@ -0,0 +1,1694 @@ +aangst;coefficient of the Angstrom relationship for extraterrestrial radiation;SD;STATION;1;real;0;0.9;1;0 +abscission;fraction of senescent leaves falling to the soil;SD;PARPLT;1;real;0;1;1;0 +aclim;climatic component to calculate actual soil evaporation (Brisson & Perrier, 1991);mm;STATION;1;real;4;25;1;0 +adens;Interplant competition parameter;SD;PARPLT;1;real;-2;0;1;1 +adfol;parameter determining the leaf density evolution within the chosen shape;m-1;PARPLT;1;real;-10;10;1;0 +adil;parameter of the critical dilution curve [Nplante]=adil MS^(-bdil);% ;PARPLT;1;real;1;7;1;0 +adilmax;parameter of the maximum dilution curve [Nplante]=adilmax MS^(-bdilmax);% ;PARPLT;1;real;3;10;1;0 +afpf;parameter of the logistic function defining sink strength of fruits (indeterminate growth) : relative fruit age at which growth is maximal;SD;PARPLT;1;real;0.01;1;1;0 +afruitpot;maximal number of set fruits per inflorescence and per degree day (indeterminate growth);fruits.inflorescence-1.degree_d-1;PARPLT;1;real;0.5;20;1;1 +ahres;parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(1);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(10);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(11);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(12);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(13);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(14);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(15);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(16);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(17);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(18);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(19);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(2);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(20);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(21);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(3);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(4);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(5);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(6);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(7);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(8);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +ahres(9);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0 +akres;parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(1);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(10);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(11);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(12);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(13);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(14);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(15);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(16);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(17);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(18);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(19);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(2);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(20);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(21);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(3);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(4);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(5);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(6);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(7);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(8);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +akres(9);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0 +aks;parameter of calculation of the energetic loss between the inside and the outside of a greenhouse ;W.m-2.K-1;STATION;1;real;0.01;100;1;0 +albedo;albedo of the bare dry soil;SD;PARSOL;1;real;0.05;0.6;1;0 +albedomulchplastique;albedo of plastic cover;SD;PARTEC;1;real;0.05;0.8;1;0 +albedomulchresidus;albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(1);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(10);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(11);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(12);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(13);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(14);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(15);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(16);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(17);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(18);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(19);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(2);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(20);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(21);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(3);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(4);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(5);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(6);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(7);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(8);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albedomulchresidus(9);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0 +albveg;albedo of the vegetation;SD;STATION;1;real;0.05;0.3;1;0 +allocfrmax;maximal daily allocation to fruits;SD;PARPLT;1;real;0.05;1;1;0 +alloperirac;allocation rate of the seed reserves (perisperm) to the rootlet growth;SD;PARPLT;1;real;0.05;1;1;0 +alphaCO2;coefficient accounting for the modification of radiation use efficiency in case of atmospheric CO2 increase;SD;PARPLT;1;real;1;2;1;0 +alphapH;maximal soil pH variation per unit of inorganic N added with slurry;kg-1 ha;PARAM;1;real;0.001;0.02;1;0 +alphaphot;parameter of photoperiodic effect on leaf lifespan;SD;PARPLT;1;real;0;1000;1;0 +alphapt;parameter of Priestley-Taylor formula;SD;STATION;1;real;1;2;1;0 +altinversion;altitude of inversion of the thermal gradient;m;STATION;1;real;0;2000;1;0 +altisimul;altitude of simulated site;m;STATION;1;real;0;2000;1;0 +altistation;altitude of the input metorological station ;m;STATION;1;real;0;2000;1;0 +ampfroid;semi thermal amplitude for vernalising effect;degree_C;PARPLT;1;real;1;30;1;0 +anitcoupe;amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(1);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(10);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(11);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(12);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(13);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(14);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(15);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(16);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(17);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(18);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(19);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(2);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(20);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(3);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(4);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(5);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(6);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(7);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(8);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +anitcoupe(9);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0 +argi;clay content after decarbonation;%;PARSOL;1;real;0;60;1;0 +awb;parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(1);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(10);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(11);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(12);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(13);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(14);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(15);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(16);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(17);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(18);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(19);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(2);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(20);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(21);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(3);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(4);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(5);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(6);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(7);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(8);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +awb(9);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0 +bangst;coefficient of the Angstrom s relationship for extraterrestrial radiation;SD;STATION;1;real;0;1;1;0 +bdens;minimal plant density above which interplant competition starts;m-2;PARPLT;1;real;1;200;1;1 +bdil;parameter of the critical dilution curve [Nplante]=adil MS^(-bdil);SD;PARPLT;1;real;0.01;0.8;1;0 +bdilmax;parameter of the maximum dilution curve [Nplante]=adilmax MS^(-bdilmax);SD;PARPLT;1;real;0.01;0.8;1;0 +belong;parameter of the curve of coleoptile elongation;degree_d-1;PARPLT;1;real;0.005;0.04;1;0 +beta;parameter of increase of maximal transpiration when a water stress occurs ;SD;PARAM;1;real;1;2;1;0 +bformnappe;coefficient for the water table shape (artificially drained soil);SD;PARAM;1;real;0;1;1;0 +bfpf;parameter of the logistic curve defining sink strength of fruits (indeterminate growth): maximum growth rate relative to maximum fruit weight;SD;PARPLT;1;real;0;30;1;0 +bhres;parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(1);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(10);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(11);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(12);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(13);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(14);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(15);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(16);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(17);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(18);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(19);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(2);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(20);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(21);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(3);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(4);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(5);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(6);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(7);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(8);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +bhres(9);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0 +biorognem;minimal crop biomass removed when topping (automatic calculation);t.ha-1;PARTEC;1;real;0;10;1;0 +bkres;potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(1);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(10);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(11);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(12);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(13);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(14);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(15);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(16);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(17);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(18);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(19);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(2);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(20);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(21);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(3);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(4);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(5);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(6);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(7);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(8);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bkres(9);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0 +bks;parameter of calculation of the energetic lost between the inside and the outside of a greenhouse ;W.m-2.K-1;STATION;1;real;0;100;1;0 +bwb;parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(1);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(10);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(11);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(12);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(13);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(14);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(15);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(16);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(17);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(18);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(19);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(2);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(20);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(21);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(3);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(4);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(5);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(6);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(7);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(8);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +bwb(9);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0 +cadencerec;number of days between two harvests;d;PARTEC;1;integer;1;30;1;0 +cailloux;volumetric content of pebbles per soil layer;%;PARSOL;5;real;0;100;1;0 +cailloux(1);volumetric content of pebbles per soil layer;%;PARSOL;5;real;0;100;1;0 +cailloux(2);volumetric content of pebbles per soil layer;%;PARSOL;5;real;0;100;1;0 +cailloux(3);volumetric content of pebbles per soil layer;%;PARSOL;5;real;0;100;1;0 +cailloux(4);volumetric content of pebbles per soil layer;%;PARSOL;5;real;0;100;1;0 +cailloux(5);volumetric content of pebbles per soil layer;%;PARSOL;5;real;0;100;1;0 +calc;total carbonate content;%;PARSOL;1;real;0;100;1;0 +capiljour;capillary rise upward water flux;mm.d-1;PARSOL;1;real;0.1;20;1;0 +celong;parameter of the plantlet elongation curve;SD;PARPLT;1;real;1;10;1;0 +cfes;parameter defining the soil contribution to evaporation versus depth ;SD;PARSOL;1;real;0.5;4;1;0 +cfpf;parameter of the first potential growth phase of fruit, corresponding to an exponential type function describing the cell division phase;SD;PARPLT;1;real;0.1;100;1;0 +cgrain;slope of the relationship between grain number and growth rate ;t-1.m2.d;PARPLT;1;real;100;5000;1;0 +cgrainv;fraction of the maximal number of grains when growth rate is zero;SD;PARPLT;1;real;0;1;1;0 +cgrainv0;fraction of the maximal number of grains when growth rate is zero;SD;PARPLT;1;real;0;1;1;0 +cielclair;fraction of sunny hours allowing the inversion of thermal gradient with altitude;SD;STATION;1;real;0;1;1;0 +cmax_pdenit;Soil organic carbon concentration above which denitrification potential is constant and maximum;g.kg-1;PARAM;1;real;3;40;1;0 +cmin_pdenit;Soil organic carbon concentration below which denitrification potential is constant and minimum;g.kg-1;PARAM;1;real;0;3;1;0 +CNgrainrec;minimal N content of grain at harvest ;g.g-1;PARTEC;1;real;0;1;1;0 +CNresmax;maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(1);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(10);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(11);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(12);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(13);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(14);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(15);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(16);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(17);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(18);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(19);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(2);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(20);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(21);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(3);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(4);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(5);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(6);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(7);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(8);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmax(9);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin;minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(1);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(10);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(11);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(12);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(13);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(14);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(15);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(16);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(17);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(18);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(19);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(2);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(20);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(21);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(3);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(4);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(5);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(6);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(7);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(8);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +CNresmin(9);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0 +codabri;option to activate cropping under shelter: 1 = no, 2 = yes;code 1/2;PARTEC;1;integer;1;2;1;0 +codadret;option to calculate mountain climate taking into account the orientation: 1 = south, 2 = north;code 1/2;STATION;1;integer;1;2;1;0 +codaltitude;option to activate the calculation of the climate in altitude: 1 = no, 2 = yes;code 1/2;STATION;1;integer;1;2;1;0 +codazofruit;option to activate the direct effect of N plant status on the fruit/grain number: 1 = no, 2 = yes;code 1/2;PARPLT;1;integer;1;2;1;0 +codazorac;option to activate the effect of N stress on root partitioning within the soil profile: 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0 +codcaleffeuil;option to calculate leaf removal by thinning: 1 = proportion of leaf removed (effeuil), 2 = lai minimal (laieffeuil);code 1/2;PARTEC;1;integer;1;2;1;0 +codcalinflo;option to calculate the inflorescences number: 1 = read in param.par, 2 = calculated at the amf stage;code 1/2;PARPLT;1;integer;1;2;1;0 +codcalrogne;option to calculate topping: 1 = forced topping, 2 = automatic calculation;code 1/2;PARTEC;1;integer;1;2;1;0 +codcueille;option to define harvest type: 1 =single harvest (cutting), 2 = multiple harvests (picking);code 1/2;PARTEC;1;integer;1;2;1;0 +code_acti_reserve;option to activate the simulation of Nitrogen and Carbon reserves: 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0 +code_auto_profres;option to define profres: 1 = profres read in tec file, 2 = profres calculated as proftrav *(1-exp(-resk.(proftrav-resz));code 1/2;PARTEC;1;integer;1;2;1;0 +code_CsurNsol_dynamic;option to activate the dynamic calculation of CsurNsol: 1 = yes, 2 = no;code 1/2;PARAMV6;1;integer;1;2;1;0 +code_diff_root;option to activate the simulation of 2 root classes: 1 =yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0 +code_hautfauche_dyn;option to activate dynamic calculation of residual LAI, biomass and N content after cutting: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0 +code_hourly_wfps_denit;option to activate hourly WFPS calculation for denitrification: 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0 +code_hourly_wfps_nit;option to activate hourly WFPS calculation for nitrification: 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0 +code_pdenit;option to define the denitrification potential: 1 = read in soil parameter, 2 = calculated from soil organic carbon concentration;code 1/2;PARAM;1;integer;1;2;1;0 +code_ratiodenit;option to define the N2O/(N2+N2O) ratio of denitrification: 1 = constant, 2 = variable;code 1/2;PARAM;1;integer;1;2;1;0 +code_rationit;option to define the N2O/(N2+N2O) ratio of nitrification: 1 = constant, 2 = variable;code 1/2;PARAM;1;integer;1;2;1;0 +code_rootdeposition;code to simulate N demand and allocation to roots and their turn-over during crop growth cycle: 1 = daily deposition, 2 = deposition only at harvest;code 1/2;PARPLT;1;integer;1;2;1;0 +code_stress_root;option to activate the preferential allocation of biomass to roots in case of water or N stress: 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0 +code_tnit;option to define the temperature function for nitrification: 1 = piecewise linear, 2 = gaussian;code 1/2;PARAM;1;integer;1;2;1;0 +code_vnit;option to define the nitrification rate dependence on NH4: 1 = first order, 2 = Michaelis-Menten;code 1/2;PARAM;1;integer;1;2;1;0 +code_WangEngel;option to activate the effect of temperature on development units for emergence according to Wang et Engel (1998): 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0 +codeactimulch;option to activate the mulch effect at soil surface: 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0 +codeaumin;option to activate the harvest according to grain/fruit water content: 1 = water content > minimum threshold, 2 = water content < maximum threshold;code 1/2;PARTEC;1;integer;1;2;1;0 +codebeso;option to calculate water requirements: 1 = k.ETP approach, 2= resistive method;code 1/2;PARPLT;1;integer;1;2;1;0 +codebfroid;option to calculate chilling requirements: 1 = no need, 2 = vernalising days, 3 = development stage;code 1/2/3;PARPLT;1;integer;1;3;1;0 +codecailloux;option to take into account pebbles in the water and N balances: 1 = yes, 2 = no;code 0/1;PARSOL;1;integer;0;1;1;0 +codecalferti;option to activate the automatic calculation of fertilisation rate: 1 = yes, 2 = no;code 1/2;PARAMV6;1;integer;1;2;1;0 +codecalirrig;option to activate the automatic calculation of irrigation requirements: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0 +codecaltemp;option to activate the use of crop temperature for phasic development calculation: 1 = empirical relation, 2 = energy balance;code 1/2;STATION;1;integer;1;2;1;0 +codeclaircie;option to simulate fruit removal: 1 = no, 2 = yes (for smallest fruits) ;code 1/2;PARTEC;1;integer;1;2;1;0 +codeclichange;option to activate climate change: 1 = no, 2 =yes;code 1/2;STATION;1;integer;1;2;1;0 +codedate_irrigauto;option to activate the beginning and the ending dates in case of automatic irrigation: 1 = dates, 2= crop stages, 3 = nothing;code 1/2/3;PARTEC;1;integer;1;3;1;0 +codedateappH2O;option to calculate irrigation dates according to sum of temperatures: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0 +codedateappN;option to calculate mineral fertilizer application dates according to sum of temperatures: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0 +codedecirecolte;option to activate moisture and frost effects on harvest decision: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0 +codedecisemis;option to activate the moisture effect on harvest decision: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0 +codedenit;option to activate the calculation of denitrification model: 1 = yes, 2 = no;code 1/2;PARSOL;1;integer;1;2;1;0 +codedisrac;option to define root profile in soil: 1 = standard root distribution, 2 = root emission proportional to root biomass;code 1/2;PARPLT;1;integer;1;2;1;0 +codedormance;option to calculate dormancy and chilling requirements: 1 = forcing, 2 = Richardson, 3 = Bidabe;code 1/2/3;PARPLT;1;integer;1;3;1;0 +codeDST;option to activate the variations in physical soil conditions due to tillage: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0 +codeDSTnbcouche;option to define the number of compacted soil layers: 1 = one layer, 2 = two layers;code 1/2;PARTEC;1;integer;1;2;1;0 +codeDSTtass;option to activate the soil compaction at sowing and harvest: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0 +codedyntalle;option to activate the module simulating tillers dynamics: 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0 +codeetp;option to calculate PET: 1 = forced Penman, 2 = calculated Penman, 3= Shuttleworth & Wallace, 4 = Priestley & Taylor;code 1/2/3/4;STATION;1;integer;1;4;1;0 +codefauche;option to activate cuts of forage crops: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0 +codefente;option to activate an additional water compartment for swelling soils: 1 = yes, 2 = no;code 0/1;PARSOL;1;integer;0;1;1;0 +codeffeuil;option to activate plant thinning: 1 = no, 2 = yes;code 1/2;PARTEC;1;integer;1;2;1;0 +codefixpot;option to calculate the maximal symbiotic fixation: 1 = fixed value read in the plant file, 2 = depends on growth rate;code 1/2;PARPLT;1;integer;1;3;1;0 +codefracappN;option to activate split applications of N fertiliser: 1 = absolute value, 2 = fraction of total N application;code 1/2;PARTEC;1;integer;1;2;1;0 +codefrmur;option to define the maturity status of the fruits in the variable CHARGEFRUIT: 1 = including ripe fruits (last box N), 2 = excluding ripe fruits (first N-1 boxes);code 1/2;PARAM;1;integer;1;2;1;0 +codefxn;option to define the effect of soil nitrate on N fixation: 1 = no effect, 2 = effect of nitrate amount, 3 = effect of nitrate concentration;code 1/2/3;PARAM;1;integer;1;3;1;0 +codegdh;option to define the time step used for calculating development units: 1 = hourly, 2 = daily;code 1/2;PARPLT;1;integer;1;2;1;0 +codegdhdeb;option to define the time step used for calculating bud break date: 1 = daily, 2 = hourly growing degrees;code 1/2;PARPLT;1;integer;1;2;1;0 +codegermin;option to simulate germination: 1 = germination phase, 2 = immediate germination;code 1/2;PARPLT;1;integer;1;2;1;0 +codeh2oact;option to activate water stress effect on crop growth: 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0 +codehypo;option to simulate plant emergency: 1 = phase of hypocotyl growth (sown crops), 2 = plantation of plantlets;code 1/2;PARPLT;1;integer;1;2;1;0 +codeindetermin;option to simulate the type of leaf growth and fruit growth: 1 = determinate, 2 = undeterminate;code 1/2;PARPLT;1;integer;1;2;1;0 +codeinitprec;option to activate reset of initial conditions in case of chained simulations: 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0 +codeINN;option to compute NNI: 1 = cumulative NNI, 2 = instantaneous NNI;code 1/2;PARPLT;1;integer;1;2;1;0 +codeinnact;option to activate N stress effect on root length growth: 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0 +codeintercept;option to simulate rainfall interception by leaves: 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0 +codeir;option to calculate the ratio grain weight/total biomass: 1 = proportional to time, 2 = proportional to thermal time;code 1/2;PARPLT;1;integer;1;2;1;0 +codejourdes;option to simulate perennial crops destruction;code 1/2;PARTEC;1;integer;1;2;1;0 +codelaitr;option to calculate the intercepted radiation according to: 1 = LAI, 2 = soil cover;code 1/2;PARPLT;1;integer;1;2;1;0 +codelegume;option to define if the crop is a legume fixing N: 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0 +codemacropor;option to activate calculation of water flux in soil macroporosity: 1 = yes, 2 = no;code 1/2;PARSOL;1;integer;1;2;1;0 +codemicheur;option to calculate hourly microclimatic outputs (output file humidite.sti): 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0 +codeminopt;option to simulate a bare soil with a constant water content: 1 = yes, 2 = no ;code 0/1;PARAM;1;integer;0;1;1;0 +codemodfauche;option to define the cutting mode: 1 = automatic calculation depending on phenologic and trophic state, 2 = pre-established calendar in days, 3 = pre-established calendar in degree-days;code 1/2/3;PARTEC;1;integer;1;3;1;0 +codemodlsnow;option to calculate snow variables: 1 = unused, 2 = unused, 3 = Snow model 3;code 1/2/3;STATION;1;integer;1;3;1;0 +codemonocot;option to define the type of plant: 1 = monocot, 2 =dicot;code 1/2;PARPLT;1;integer;1;2;1;0 +codemontaison;option to stop the reserve limitation after stem elongation in grassland: 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0 +codemortalracine;option to calculate the mass of dead roots after a cut: 1 = based on masec, 2 = based on masectot;code 1/2;PARPLT;1;integer;1;2;1;0 +codemsfinal;option to define if the biomass and yield are conserved after harvest: 1 = yes, 2 = no (values set at 0);code 1/2;PARAM;1;integer;1;2;1;0 +codenitrif;option to activate the nitrification model: 1 = yes, 2 = no;code 1/2;PARSOL;1;integer;1;2;1;0 +codeNmindec;option to activate the limitation of residues decomposition due lack of mineral N: 1 = yes, 2 = no;code 1/2;PARAMV6;1;integer;1;2;1;0 +codeoutscient;option to write outputs files with scientific format: 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0 +codepaillage;option to define soil cover: 1 = no cover, 2 = plastic cover partly covering the soil ;code 1/2;PARTEC;1;integer;1;2;1;0 +codepalissage;option to define if the plant is fixed onto a vertical support: 1 = no, 2 =yes;code 1/2;PARTEC;1;integer;1;3;1;0 +codeperenne;option to define the crop perenniality: 1 = annual crop, 2 = perennial crop;code 1/2;PARPLT;1;integer;1;2;1;0 +codephot;option to define plant photoperiodism: 1 = yes, 2 = no;code1/2;PARPLT;1;integer;1;2;1;0 +codephot_part;simulation of the effect of decreasing photoperiod on biomass allocation : 1 = yes, 2 = no;code1/2;PARPLT;1;integer;1;2;1;0 +codeplante;option to define the coding name of the plant (3 characters);SD;PARPLT;1;character;;;0;0 +codeplisoleN;option to define N requirements at the beginning of the cycle: 1 = dense plant population, 2 = isolated plants;code 1/2;PARPLT;1;integer;1;2;1;0 +codepluiepoquet;option to replace rainfall by irrigation at poquet depth in the case of poquet sowing: 1 = yes, 2 = no ;code 1/2;PARAMV6;1;integer;1;2;1;0 +codeprofmes;option of soil depth for calculating water and N stocks (1 = profmes, 2 = soil depth);code 1/2;PARAM;1;integer;1;2;1;0 +coderacine;option to define the calculation of root growth and extension: 1 = standard profile, 2 = root length density;code 1/2;PARPLT;1;integer;1;2;1;0 +coderecolteassoc;option to harvest intercrop species simultaneously, at the physiological maturity date of the earliest one: 1 = no, 2 = yes;code 1/2;PARTEC;1;integer;1;2;1;0 +coderemontcap;option to activate capillary rise: 1 = yes, 2 = no;code 1/2;PARSOL;1;integer;1;2;1;0 +coderes;residue type: 1=mature crop, 2=cover crop, 3=Manure, 4=Green compost, 5=Sewage sludge, 6=Vinasse, 7=Horn, 8=vineyard prunings, 9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0 +coderes_pature;residue type used to simulate bovine feces: 1-10;code 1/10;PARAMV6;1;integer;1;10;1;0 +coderes(1);residue type: 1=mature crop, 2=cover crop, 3=Manure, 4=Green compost, 5=Sewage sludge, 6=Vinasse, 7=Horn, 8=vineyard prunings, 9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0 +coderes(10);residue type: 1=mature crop, 2=cover crop, 3=Manure, 4=Green compost, 5=Sewage sludge, 6=Vinasse, 7=Horn, 8=vineyard prunings, 9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0 +coderes(2);residue type: 1=mature crop, 2=cover crop, 3=Manure, 4=Green compost, 5=Sewage sludge, 6=Vinasse, 7=Horn, 8=vineyard prunings, 9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0 +coderes(3);residue type: 1=mature crop, 2=cover crop, 3=Manure, 4=Green compost, 5=Sewage sludge, 6=Vinasse, 7=Horn, 8=vineyard prunings, 9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0 +coderes(4);residue type: 1=mature crop, 2=cover crop, 3=Manure, 4=Green compost, 5=Sewage sludge, 6=Vinasse, 7=Horn, 8=vineyard prunings, 9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0 +coderes(5);residue type: 1=mature crop, 2=cover crop, 3=Manure, 4=Green compost, 5=Sewage sludge, 6=Vinasse, 7=Horn, 8=vineyard prunings, 9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0 +coderes(6);residue type: 1=mature crop, 2=cover crop, 3=Manure, 4=Green compost, 5=Sewage sludge, 6=Vinasse, 7=Horn, 8=vineyard prunings, 9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0 +coderes(7);residue type: 1=mature crop, 2=cover crop, 3=Manure, 4=Green compost, 5=Sewage sludge, 6=Vinasse, 7=Horn, 8=vineyard prunings, 9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0 +coderes(8);residue type: 1=mature crop, 2=cover crop, 3=Manure, 4=Green compost, 5=Sewage sludge, 6=Vinasse, 7=Horn, 8=vineyard prunings, 9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0 +coderes(9);residue type: 1=mature crop, 2=cover crop, 3=Manure, 4=Green compost, 5=Sewage sludge, 6=Vinasse, 7=Horn, 8=vineyard prunings, 9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0 +coderetflo;option to activate the effect of water stress on development before the stage DRP (filling of harvested organs): 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0 +codernet;option to calculate net radiation: 1 = Brunt method, 2 = Cellier method;code 1/2;STATION;1;integer;1;2;1;0 +codesensibilite;option to activate the sensitivity analysis version of the model: 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0 +codeseprapport;option to select the column separator in the rapport.sti output file: 1 = space separator, 2 = separator indicated in the file rapport.sti;code 1/2;PARAM;1;integer;1;2;1;0 +codesimul;option to define the type of crop simulation: culture or 0 (LAI calculated by the model), feuille or 1 (LAI forced);SD / code 0/1;USM/USMXML;1;character/integer;;;0;0 +codesnow;option to activate the snow module: 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0 +codestade;option to force one or several development stages: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0 +codestrphot;option to activate the photoperiodic stress on lifespan (1 = yes, 2 = no);code 1/2;PARPLT;1;integer;1;2;1;0 +codesuite;option to simulate several successive USM: 0 = no, 1 = yes;code 0/1;USM;1;integer;0;0;1;0 +codeSWDRH;optin to calculate the duration of surface wetness: 1=yes , 2 = no;code 1/2;PARAMV6;1;integer;1;2;1;0 +codesymbiose;option to calculate symbiotic N fixation: 1 = based on critical dilution curve, 2 = specific calculation of N fixation;code 1/2;PARAM;1;integer;1;2;1;0 +codetaille;option to activate pruning: 1 = no, 2 = yes;code 1/2;PARTEC;1;integer;1;2;1;0 +codetemp;option to calculate thermal time for plant growth: 1 = based on air temperature, 2 = based on crop temperature;code 1/2;PARPLT;1;integer;1;2;1;0 +codetempfauche;option to define the reference temperature to compute cutting sum of temperatures: 1 = upvt, 2 = udevair;code 1/2;PARTEC;1;integer;1;2;1;0 +codetemprac;option to calculate thermal time for root growth: 1 = crop temperature, 2 = soil temperature;code 1/2;PARPLT;1;integer;1;2;1;0 +codetesthumN;option to define automatic N fertilisation calculation: 1 = based on rainfall, 2 = based on soil water content;code 1/2;PARAMV6;1;integer;1;2;1;0 +codetradtec;option to activate the effect of crop structure on radiation transfer: 1 =yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0 +codetranspitalle;option to choose the ratio used to calculate tiller mortality: 1 = et/etm, 2 = epc2/eopC;code 1/2;PARPLT;1;integer;1;2;1;0 +codetransrad;option to calculate radiation interception: 1 = Beer law, 2 = radiative transfer;code 1/2;PARPLT;1;integer;1;2;1;0 +codetremp;option to activate heat effect on grain filling: 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0 +codetrosee;option to calculate hourly dew temperature : 1 = linear interpolation, 2 = sinusoidal interpolation (Debele Bekele et al, 2007);code 1/2;PARAMV6;1;integer;1;2;1;0 +codetycailloux;code for pebble type;code 1 to 10;PARAM;1;integer;1;10;1;0 +codetypeng;code for fertiliser type;code 1 to 8;PARAM;1;integer;1;8;1;0 +codetypres;code for organic residue;code 1 to 10;PARAM;1;integer;1;21;1;0 +codevar;code for cultivar name;SD;PARPLT;1;character;;;0;1 +codgelflo;option to activate the frost effect at anthesis: 1 = no, 2 = yes;code 1/2;PARPLT;1;integer;1;2;1;0 +codgeljuv;option to activate the frost effect on LAI at the juvenile stage: 1 = no, 2 = yes;code 1/2;PARPLT;1;integer;1;2;1;0 +codgellev;option to activate the frost effect on plantlet growth: 1 = no, 2 = yes;code 1/2;PARPLT;1;integer;1;2;1;0 +codgelveg;option to activate the frost effect on LAI at adult stage: 1 = no, 2 = yes;code 1/2;PARPLT;1;integer;1;2;1;0 +codhauteff;option to define the height of leaf removal (if the thinning option is activated): 1 = bottom of the canopy, 2 = top of the canopy;code 1/2;PARTEC;1;integer;1;2;1;0 +codhnappe;option to calculate the watertable level : 1 = mean height, 2 = height at the distance distdrain;code 1/2;PARAM;1;integer;1;2;1;0 +codlainet;option to calculate the LAI: 1 = net LAI, 2 = difference between gross LAI and senescent LAI;code 1/2;PARPLT;1;integer;1;2;1;0 +codlocferti;option to define localized fertilisation: 1 = at soil surface, 2 = deeper in the soil;code 1/2;PARTEC;1;integer;1;2;1;0 +codlocirrig;option to define localized irrigation: 1= above the foliage, 2= below the foliage above the soil, 3 = in the soil;code 1/2/3;PARTEC;1;integer;1;3;1;0 +codoptim;option to activate the optimisation code: 0 = no, 1 = optimisation for the main crop, 2 = optimisation for the associated crop;code 0/1/2;USM;1;integer;0;2;1;0 +codrainage;option to simulate artificial drainage: 1 = yes, 2 = no;code 1/2;PARSOL;1;integer;0;1;1;0 +codrecolte;option to define harvest strategy: 1 = at physiological maturity, 2 = according to water content, 3 = according to sugar content, 4 = according to nitrogen content, 5 = according to oil content;code 1 to 5;PARTEC;1;integer;1;5;1;0 +codrognage;option to activate foliage control by trimming: 1 = no, 2 = yes;code 1/2;PARTEC;1;integer;1;2;1;0 +codtrophrac;option to activate a trophic effect on root length growth: 1 = permanent link, 2 = link by thresholds, 3 = no effect;code 1/2/3;PARPLT;1;integer;1;3;1;0 +coef_calcul_doseN;crop N concentration below which there is no N return to the soil through animal urine;g.kg-1;PARAMV6;1;real;1;30;1;0 +coef_calcul_qres;crop N concentration used to calculate animal feces from animal grass dry matter intake;g.kg-1;PARAMV6;1;real;1;10;1;0 +coefamflax;multiplier coefficient applied to the thermal time requirement between stages AMF and LAX;SD;PARPLT;1;real;1;2;1;0 +coefb;parameter defining the radiation saturation effect on biomass conversion efficiency;g.MJ-1;PARAM;1;real;0.05;0.15;1;0 +coefdevil;multiplier coefficient of the outdoor radiation to calculate PET inside of a greenhouse;SD;STATION;1;real;0.3;1.2;1;0 +coefdrpmat;multiplier coefficient applied to the thermal time requirement between stages DRP and MAT;SD;PARPLT;1;real;1;2;1;0 +coefflodrp;multiplier coefficient applied to the thermal time requirement between stages FLO and DRP;SD;PARPLT;1;real;1;2;1;0 +coeflaxsen;multiplier coefficient applied to the thermal time requirement between stages LAX and SEN;SD;PARPLT;1;real;1;2;1;0 +coeflevamf;multiplier coefficient applied to the thermal time requirement between stages LEV and AMF;SD;PARPLT;1;real;1;2;1;0 +coeflevdrp;multiplier coefficient applied to the thermal time requirement between stages LEV and DRP;SD;PARPLT;1;real;1;2;1;0 +coefmshaut;ratio of crop biomass to useful cutting height of crops ;t.ha-1.m-1;PARPLT;1;real;2;50;1;0 +coefracoupe;proportion of roots dying after a cut of a forage crop;SD;PARPLT;1;real;0.001;1;1;0 +coefrnet;coefficient applied to the (outdoor) net radiation to calculate the net radiation under a greenhouse;SD;STATION;1;real;0.001;1;1;0 +coefsenlan;multiplier coefficient applied to the thermal time requirement between stages SEN and LAN;SD;PARPLT;1;real;1;2;1;0 +concirr;concentration of mineral N (NH4+NO3-N) in irrigation water;kg.ha-1 mm-1;PARTEC;1;real;0;0.2;1;0 +concNnodseuil;maximal concentration of mineral N in soil for nodule onset ;kg.ha-1.mm-1;PARPLT;1;real;0;10;1;0 +concNrac;nitrate-N concentration (if codefxN=3) or nitrate-N amount (if codefxN=2) above which N fixation is totally inhibited;kg.ha-1.mm-1 or kg.ha-1.cm-1;PARPLT;1;real;0;10;1;0 +concNrac0;nitrate-N concentration (if codefxN=3) or nitrate-N amount (if codefxN=2) above which N fixation is totally inhibited;kg.ha-1.mm-1 or kg.ha-1.cm-1;PARPLT;1;real;0;10;1;0 +concNrac100;nitrate-N concentration (if codefxN=3) or nitrate-N amount (if codefxN=2) below which N fixation is maximum;kg.ha-1.mm-1 or kg.ha-1.cm-2;PARPLT;1;real;0;2;1;0 +concrr;concentration of mineral N (NH4+NO3-N) in the rain;kg.ha-1 mm-1;STATION;1;real;0;3;1;0 +concseuil;minimum concentration of NO3-N in soil (unavailable for leaching and for uptake);kg.ha-1 mm-1;PARSOL;1;real;0;0.5;1;0 +contrdamax;maximal reduction factor applied to root growth rate due to soil strengthness (high bulk density);SD;PARPLT;1;real;0;1;1;0 +corecTrosee;temperature to substract to Tmin to estimate dew point temperature (in case of missing air humidity data);degree_C;STATION;1;real;-5;5;1;0 +couvermulchplastique;fraction of soil covered by the plastic mulch ;SD;PARTEC;1;real;0;1;1;0 +Crespc;C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0 +Crespc_pature;C content in animal feces (FW);%;PARAMV6;1;real;0;100;1;0 +Crespc(1);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0 +Crespc(10);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0 +Crespc(11);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0 +Crespc(2);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0 +Crespc(3);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0 +Crespc(4);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0 +Crespc(5);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0 +Crespc(6);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0 +Crespc(7);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0 +Crespc(8);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0 +Crespc(9);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0 +CroCo;fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(1);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(10);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(11);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(12);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(13);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(14);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(15);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(16);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(17);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(18);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(19);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(2);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(20);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(21);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(3);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(4);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(5);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(6);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(7);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(8);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +CroCo(9);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0 +croirac;elongation rate of the root apex;cm.degree_d-1;PARPLT;1;real;0;0.5;1;1 +CsurNres;C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0 +CsurNres(1);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0 +CsurNres(10);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0 +CsurNres(11);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0 +CsurNres(2);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0 +CsurNres(3);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0 +CsurNres(4);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0 +CsurNres(5);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0 +CsurNres(6);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0 +CsurNres(7);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0 +CsurNres(8);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0 +CsurNres(9);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0 +CsurNsol;Initial C to N ratio of soil humus;g.g-1;PARSOL;1;real;8;20;1;0 +CsurNsol0;Initial C to N ratio of soil humus;g.g-1;PARSOL;1;real;8;20;1;0 +culturean;number of calendar years involved in the crop cycle (1 = 1 year e.g. for spring crops, 2 = two years, e.g. for winter crops);SD;USM/USMXML;1;integer;1;2;1;0 +cvent;parameter of the climate calculation under shelter;SD;STATION;1;real;0.001;1;1;0 +cwb;minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(1);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(10);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(11);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(12);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(13);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(14);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(15);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(16);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(17);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(18);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(19);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(2);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(20);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(21);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(3);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(4);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(5);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(6);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(7);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(8);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +cwb(9);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0 +dachisel;bulk density of soil after soil tillage (Chisel);g.cm-3;PARTEC;1;real;0.8;1.7;1;0 +dacohes;bulk density of soil below which root growth is reduced due to a lack of soil cohesion;g.cm-3;PARAM;1;real;0.001;1.4;1;0 +DAF;bulk density of fine earth fraction in each soil layer;g.cm-3;PARSOL;5;real;0.8;2;1;0 +DAF(1);bulk density of fine earth fraction in each soil layer;g.cm-3;PARSOL;5;real;0.8;2;1;0 +DAF(2);bulk density of fine earth fraction in each soil layer;g.cm-3;PARSOL;5;real;0.8;2;1;0 +DAF(3);bulk density of fine earth fraction in each soil layer;g.cm-3;PARSOL;5;real;0.8;2;1;0 +DAF(4);bulk density of fine earth fraction in each soil layer;g.cm-3;PARSOL;5;real;0.8;2;1;0 +DAF(5);bulk density of fine earth fraction in each soil layer;g.cm-3;PARSOL;5;real;0.8;2;1;0 +dalabour;bulk density of soil after full inversion tillage (plough);g.cm-3;PARTEC;1;real;0.8;2;1;0 +darecolte;bulk density of soil after harvest;g.cm-3;PARTEC;1;real;0.8;2;1;0 +dasemis;bulk density of soil after sowing;g.cm-3;PARTEC;1;real;0.8;2;1;0 +daseuilbas;bulk density of soil above which root growth is maximal;g.cm-3;PARAM;1;real;1;1.4;1;0 +daseuilhaut;bulk density of soil above which root growth becomes impossible;g.cm-3;PARAM;1;real;1.4;2.5;1;0 +datedeb_irrigauto;starting date of automatic irrigations;julian_d;PARTEC;1;integer;1;731;1;0 +datedebut;starting date of simulation;julian_d;USM/USMXML;1;integer;0;730;1;0 +datefin;ending date of simulation;julian_d;USM/USMXML;1;integer;0;730;1;0 +datefin_irrigauto;ending date of automatic irrigations;julian_d;PARTEC;1;integer;1;731;1;0 +debsenrac;thermal time units defining the beginning of root senescence (root life time);degree_d;PARPLT;1;real;0;2000;1;0 +deneng;maximal fraction of the mineral fertilizer that can be denitrified (used if codedenit is not activated);SD;PARAM;8;real;0;1;1;0 +deneng(1);maximal fraction of the mineral fertilizer that can be denitrified (used if codedenit is not activated);SD;PARAM;8;real;0;1;1;0 +deneng(2);maximal fraction of the mineral fertilizer that can be denitrified (used if codedenit is not activated);SD;PARAM;8;real;0;1;1;0 +deneng(3);maximal fraction of the mineral fertilizer that can be denitrified (used if codedenit is not activated);SD;PARAM;8;real;0;1;1;0 +deneng(4);maximal fraction of the mineral fertilizer that can be denitrified (used if codedenit is not activated);SD;PARAM;8;real;0;1;1;0 +deneng(5);maximal fraction of the mineral fertilizer that can be denitrified (used if codedenit is not activated);SD;PARAM;8;real;0;1;1;0 +deneng(6);maximal fraction of the mineral fertilizer that can be denitrified (used if codedenit is not activated);SD;PARAM;8;real;0;1;1;0 +deneng(7);maximal fraction of the mineral fertilizer that can be denitrified (used if codedenit is not activated);SD;PARAM;8;real;0;1;1;0 +deneng(8);maximal fraction of the mineral fertilizer that can be denitrified (used if codedenit is not activated);SD;PARAM;8;real;0;1;1;0 +densinitial;initial root density in each of the five soil layers;cm.cm-3;INIT;5;real;0;10;1;0 +densinitial(1);initial root density in each of the five soil layers;cm.cm-3;INIT;5;real;0;10;1;0 +densinitial(2);initial root density in each of the five soil layers;cm.cm-3;INIT;5;real;0;10;1;0 +densinitial(3);initial root density in each of the five soil layers;cm.cm-3;INIT;5;real;0;10;1;0 +densinitial(4);initial root density in each of the five soil layers;cm.cm-3;INIT;5;real;0;10;1;0 +densinitial(5);initial root density in each of the five soil layers;cm.cm-3;INIT;5;real;0;10;1;0 +densitesem;plant sowing density ;pl.m-2;PARTEC;1;real;0.05;2000;1;0 +deshydbase;rate of change of water content in fruits (FW) vs thermal time (>0 or <0);g.g-1.degree_d-1;PARPLT;1;real;-0.02;0.02;1;1 +dfolbas;minimal foliar density within the considered shape;m2.m-3;PARPLT;1;real;1;10;1;0 +dfolhaut;maximal foliar density within the considered shape;m2.m-3;PARPLT;1;real;1;10;1;0 +dfpf;parameter of the first potential growth phase of fruit, corresponding to an exponential type function describing the cell division phase;SD;PARPLT;1;real;0.01;5;1;0 +difN;diffusion coefficient of nitrate in soil at field capacity;cm2.d-1;PARAM;1;real;0.01;0.1;1;0 +diftherm;soil thermal diffusivity;cm2.s-1;PARAM;1;real;0.001;0.01;1;0 +distdrain;distance between mole drains;cm;PARAM;1;real;0;25000;1;0 +DKmax;difference between the maximum and the minimum melting rates for snow;mm.degree_C-1.d-1;STATION;1;real;1;2;1;0 +dlaimax;maximum rate of net daily increase of LAI;m2.pl-1.degree_d-1;PARPLT;1;real;5e-06;0.5;1;1 +dlaimaxbrut;maximum rate of gross daily increase of LAI;m2.pl-1.degree_d-1;PARPLT;1;real;5e-06;0.5;1;1 +dlaimin;accelerating parameter for the lai growth rate;SD;PARPLT;1;real;0;1;1;0 +dltamsmaxsen;growth rate above which there is no more photoperiodic effect on senescence;t.ha-1.d-1;PARPLT;1;real;0.01;0.2;1;0 +dltamsminsen;growth rate below which the photoperiodic effect on senescence is maximal;t.ha-1.d-1;PARPLT;1;real;0.01;0.2;1;0 +doseI;daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(1);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(10);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(11);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(12);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(13);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(14);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(15);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(16);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(17);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(18);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(19);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(2);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(20);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(21);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(22);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(23);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(24);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(25);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(26);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(27);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(28);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(29);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(3);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(30);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(4);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(5);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(6);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(7);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(8);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseI(9);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0 +doseirrigmin;minimal amount of daily irrigation;mm.d-1;PARTEC;1;real;0;500;1;0 +doseN;daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(1);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(10);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(11);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(12);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(13);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(14);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(15);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(16);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(17);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(18);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(19);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(2);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(20);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(3);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(4);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(5);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(6);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(7);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(8);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +doseN(9);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0 +dosimx;maximum amount of irrigation water applied daily (mode automatic irrigation);mm.d-1;PARTEC;1;real;10;500;1;0 +dosimxN;maximum amount of fertiliser N applied daily (mode automatic fertilisation);kg.ha-1.d-1;PARAMV6;1;real;5;500;1;0 +dpHvolmax;maximal pH increase following the application of slurry;SD;PARAM;1;real;0;3;1;0 +draclong;maximum rate of root length production per plant;cm.pl-1.degree_d-1;PARPLT;1;real;1;1000;1;0 +dureefruit;duration of the fruit between onset and physiological maturity;degree_d;PARPLT;1;real;10;2000;1;1 +durvieF;maximal lifespan of an adult leaf expressed in summation of Q10=2 (2**(T-Tbase));SD;PARPLT;1;real;10;500;1;1 +durviesupmax;relative additional lifespan due to N excess in plant (INN > 1);SD;PARPLT;1;real;0;1;1;0 +E;snow compaction parameter;mm.mm-1.d-1;STATION;1;real;0;0.05;1;0 +eau_mini_decisemis;minimum amount of rainfall required to start sowing (when codesemis is activated);mm;PARTEC;1;integer;0;40;1;0 +eaures;water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0 +eaures_pature;water content of animal feces deposited on soil during grazing (FW);%;PARAMV6;1;real;0;100;1;0 +eaures(1);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0 +eaures(10);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0 +eaures(11);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0 +eaures(2);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0 +eaures(3);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0 +eaures(4);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0 +eaures(5);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0 +eaures(6);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0 +eaures(7);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0 +eaures(8);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0 +eaures(9);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0 +ecartdrain;distance between mole drains;cm;PARSOL;1;real;100;5000;1;0 +efcroijuv;maximum radiation use efficiency during the juvenile phase (LEV-AMF);g.MJ-1;PARPLT;1;real;1;7;1;0 +efcroirepro;maximum radiation use efficiency during the grain filling phase (DRP-MAT);g.MJ-1;PARPLT;1;real;1;10;1;0 +efcroiveg;maximum radiation use efficiency during the vegetative stage (AMF-DRP);g.MJ-1;PARPLT;1;real;1;10;1;0 +effeuil;fraction of leaf removed by plant thinning;SD;PARTEC;1;real;0;1;1;0 +effirr;irrigation efficiency;SD;PARTEC;1;real;0.2;1;1;0 +efremobil;Efficiency of use of carbohydrates in storage organs of perennials;SD;PARPLT;1;real;0;1;1;0 +elmax;maximum elongation of the coleoptile in darkness condition;cm;PARPLT;1;real;2;40;1;0 +engamm;fraction of ammonium in the N fertilizer;SD;PARAM;8;real;0;1;1;0 +engamm(1);fraction of ammonium in the N fertilizer;SD;PARAM;8;real;0;1;1;0 +engamm(2);fraction of ammonium in the N fertilizer;SD;PARAM;8;real;0;1;1;0 +engamm(3);fraction of ammonium in the N fertilizer;SD;PARAM;8;real;0;1;1;0 +engamm(4);fraction of ammonium in the N fertilizer;SD;PARAM;8;real;0;1;1;0 +engamm(5);fraction of ammonium in the N fertilizer;SD;PARAM;8;real;0;1;1;0 +engamm(6);fraction of ammonium in the N fertilizer;SD;PARAM;8;real;0;1;1;0 +engamm(7);fraction of ammonium in the N fertilizer;SD;PARAM;8;real;0;1;1;0 +engamm(8);fraction of ammonium in the N fertilizer;SD;PARAM;8;real;0;1;1;0 +engrais;fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engrais_pature;fertilizer type used to mimic urine excretion (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARAMV6;1;integer;1;8;1;0 +engrais(1);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engrais(10);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engrais(2);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engrais(3);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engrais(4);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engrais(5);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engrais(6);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engrais(7);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engrais(8);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engrais(9);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engraiscoupe;fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engraiscoupe(1);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engraiscoupe(10);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engraiscoupe(2);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engraiscoupe(3);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engraiscoupe(4);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engraiscoupe(5);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engraiscoupe(6);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engraiscoupe(7);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engraiscoupe(8);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +engraiscoupe(9);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0 +envfruit;fraction of envelop in grainmaxi;SD;PARPLT;1;real;0;0.5;1;0 +epc;thickness of each soil layer;cm ;PARSOL;5;real;1;1000;1;0 +epc(1);thickness of each soil layer;cm ;PARSOL;5;real;1;1000;1;0 +epc(2);thickness of each soil layer;cm ;PARSOL;5;real;1;1000;1;0 +epc(3);thickness of each soil layer;cm ;PARSOL;5;real;1;1000;1;0 +epc(4);thickness of each soil layer;cm ;PARSOL;5;real;1;1000;1;0 +epc(5);thickness of each soil layer;cm ;PARSOL;5;real;1;1000;1;0 +epd;thickness of mixing cells in each soil layer ( = 2 * dispersion length);cm;PARSOL;5;integer;1;50;1;0 +epd(1);thickness of mixing cells in each soil layer ( = 2 * dispersion length);cm;PARSOL;5;integer;1;50;1;0 +epd(2);thickness of mixing cells in each soil layer ( = 2 * dispersion length);cm;PARSOL;5;integer;1;50;1;0 +epd(3);thickness of mixing cells in each soil layer ( = 2 * dispersion length);cm;PARSOL;5;integer;1;50;1;0 +epd(4);thickness of mixing cells in each soil layer ( = 2 * dispersion length);cm;PARSOL;5;integer;1;50;1;0 +epd(5);thickness of mixing cells in each soil layer ( = 2 * dispersion length);cm;PARSOL;5;integer;1;50;1;0 +extin;extinction coefficient of photosynthetic active radiation in the canopy;SD;PARPLT;1;real;0.1;1.5;1;1 +fclim1;name of the first climate file;SD;USM/USMXML;1;character;;;0;0 +fclim2;name of the second climate file;SD;USM/USMXML;1;character;;;0;0 +fhminsat;relative soil mineralisation rate at water saturation;SD;PARAM;1;real;0;1;1;0 +finert;initial fraction of inert pool in the soil organic pool (= stable SON/ total SON);SD;PARSOL;1;real;0;1;1;0 +finit;name of the initialisation file ;SD;USM/USMXML;1;character;;;0;0 +fixmax;maximal N symbiotic fixation rate;kg.ha-1.d-1;PARPLT;1;real;2;12;1;0 +fixmaxgr;maximal N symbiotic fixation rate per unit of grain growth rate;kg.t-1;PARPLT;1;real;0;50;1;0 +fixmaxveg;maximal N symbiotic fixation rate per unit of vegetative growth rate;kg.t-1;PARPLT;1;real;0;50;1;0 +flagecriture;option for writing the output files (1 = mod_history.sti, 2=daily outputs,4= report outputs, 8=balance outputs,16 = profile outputs, 32= debug outputs, 64 = screen outputs) sum them to have several types of outputs;SD;PARAM;1;integer;0;511;1;0 +flai;name of the LAI file;SD;USM/USMXML;1;character;;;0;0 +fNCbiomin;minimal value for the ratio N/C of the microbial biomass when N limits decomposition;g.g-1;PARAM;1;real;0.01;0.1;1;0 +fNmindecmin;minimal fraction of mineral N available for residues decomposition (if codeNmindec is activated);SD;PARAMV6;1;real;0;1;1;0 +fnx;maximum fraction of NH4 nitrified each day (first order model);SD;PARAM;1;real;0.01;1;1;0 +fobs;name of the observed file;SD;USM/USMXML;1;character;;;0;0 +forme;option to define the shape of leaf density profile: 1 = rectangle, 2 = triangle;code 1/2;PARPLT;1;integer;1;2;1;0 +fplt;name of the plant file;SD;USM/USMXML;1;character;;;0;0 +fracN;proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0 +fracN(1);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0 +fracN(10);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0 +fracN(2);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0 +fracN(3);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0 +fracN(4);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0 +fracN(5);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0 +fracN(6);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0 +fracN(7);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0 +fracN(8);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0 +fracN(9);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0 +fredkN;reduction factor of decomposition rate of organic residues when mineral N is limiting;SD;PARAM;1;real;0.1;1;1;0 +fredlN;reduction factor of decomposition rate of microbial biomass when mineral N is limiting;SD;PARAM;1;real;0.2;1;1;0 +fredNsup;additional reduction factor of residues decomposition rate when mineral N is highly limiting;SD;PARAM;1;real;0;1;1;0 +fstation;name of the weather station file;SD;USM/USMXML;1;character;;;0;0 +ftec;name of the technical file;SD;USM/USMXML;1;character;;;0;0 +ftemh;parameter (1/2) of the temperature function on humus decomposition rate;K-1;PARAM;1;real;0.05;0.5;1;0 +ftemha;parameter (2/2) of the temperature function on humus decomposition rate;SD;PARAM;1;real;10;50;1;0 +ftemr;parameter (1/2) of the temperature function on decomposition rate of organic residues;K-1;PARAM;1;real;0.05;0.5;1;0 +ftemra;parameter (2/2) of the temperature function on decomposition rate of organic residues;SD;PARAM;1;real;5;30;1;0 +GMIN1;parameter (1/7) of the new mineralization function (Clivot et al, 2017);d-1;PARAM;1;real;0;1;1;0 +GMIN2;parameter (2/7) of the new mineralization function (Clivot et al, 2017);-1%;PARAM;1;real;0;0.1;1;0 +GMIN3;parameter (3/7) of the new mineralization function (Clivot et al, 2017);-1%;PARAM;1;real;0;0.1;1;0 +GMIN4;parameter (4/7) of the new mineralization function (Clivot et al, 2017);pH-1;PARAM;1;real;0;1;1;0 +GMIN5;parameter (5/7) of the new mineralization function (Clivot et al, 2017);pH;PARAM;1;real;3;11;1;0 +GMIN6;parameter (6/7) of the new mineralization function (Clivot et al, 2017);g.g-1;PARAM;1;real;0;1;1;0 +GMIN7;parameter (7/7) of the new mineralization function (Clivot et al, 2017);g.g-1;PARAM;1;real;5;35;1;0 +gradtn;thermal gradient in altitude for minimal temperatures ;degree_C.100m-1;STATION;1;real;0.1;3;1;0 +gradtninv;thermal gradient in altitude for minimal temperatures under the inversion level;degree_C.100m-1;STATION;1;real;0.1;3;1;0 +gradtx;thermal gradient in altitude for maximal temperatures ;degree_C.100m-1;STATION;1;real;0.1;3;1;0 +h2ofeuiljaune;water content of yellow leaves (FW);g.g-1;PARPLT;1;real;0.05;1;1;0 +h2ofeuilverte;water content of green leaves (FW);g.g-1;PARPLT;1;real;0.5;1;1;0 +h2ofrvert;water content of fruits before the beginning of dehydration (FW);g.g-1;PARPLT;1;real;0.1;1;1;0 +h2ograinmax;maximal water content of fruits at harvest (FW);g.g-1;PARTEC;1;real;0.05;1;1;0 +h2ograinmin;minimal water content of fruits at harvest (FW);g.g-1;PARTEC;1;real;0.05;1;1;0 +h2oreserve;water content of crop reserve (FW);g.g-1;PARPLT;1;real;0.5;1;1;0 +h2otigestruc;water content of structural stem part (FW);g.g-1;PARPLT;1;real;0.5;1;1;0 +hautbase;basal height of crop;m;PARPLT;1;real;0.1;2;1;1 +hautcoupe;cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(1);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(10);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(11);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(12);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(13);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(14);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(15);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(16);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(17);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(18);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(19);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(2);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(20);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(3);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(4);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(5);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(6);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(7);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(8);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupe(9);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0 +hautcoupedefaut;cut height for forage crops (calendar calculated);m;PARTEC;1;real;0.01;0.5;1;0 +hautmax;maximum height of crop;m;PARPLT;1;real;0.1;5;1;1 +hautmaxtec;maximal height of the plant allowed by the management;m;PARTEC;1;real;0.5;3;1;0 +hautrogne;cutting height for trimmed plants;m;PARTEC;1;real;0.2;2;1;0 +hcccx;gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0 +hcccx(1);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0 +hcccx(10);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0 +hcccx(2);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0 +hcccx(3);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0 +hcccx(4);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0 +hcccx(5);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0 +hcccx(6);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0 +hcccx(7);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0 +hcccx(8);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0 +hcccx(9);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0 +hccf;gravimetric water content at field capacity of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;10;110;1;0 +hccf(1);gravimetric water content at field capacity of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;10;110;1;0 +hccf(2);gravimetric water content at field capacity of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;10;110;1;0 +hccf(3);gravimetric water content at field capacity of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;10;110;1;0 +hccf(4);gravimetric water content at field capacity of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;10;110;1;0 +hccf(5);gravimetric water content at field capacity of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;10;110;1;0 +Hinitf;initial gravimetric water content of each soil layer (in fine earth, dry soil);%;INIT;5;real;5;110;1;0 +Hinitf(1);initial gravimetric water content of each soil layer (in fine earth, dry soil);%;INIT;5;real;5;110;1;0 +Hinitf(2);initial gravimetric water content of each soil layer (in fine earth, dry soil);%;INIT;5;real;5;110;1;0 +Hinitf(3);initial gravimetric water content of each soil layer (in fine earth, dry soil);%;INIT;5;real;5;110;1;0 +Hinitf(4);initial gravimetric water content of each soil layer (in fine earth, dry soil);%;INIT;5;real;5;110;1;0 +Hinitf(5);initial gravimetric water content of each soil layer (in fine earth, dry soil);%;INIT;5;real;5;110;1;0 +hminf;gravimetric water content at wilting point of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;2;25;1;0 +hminf(1);gravimetric water content at wilting point of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;2;25;1;0 +hminf(2);gravimetric water content at wilting point of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;2;25;1;0 +hminf(3);gravimetric water content at wilting point of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;2;25;1;0 +hminf(4);gravimetric water content at wilting point of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;2;25;1;0 +hminf(5);gravimetric water content at wilting point of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;2;25;1;0 +hminm;relative water content (fraction of field capacity) below which mineralisation rate is nil;SD;PARAM;1;real;0;1;1;0 +hminn;relative water content (fraction of field capacity) below which nitrification rate is nil;SD;PARAM;1;real;0;1;1;0 +hoptm;relative water content (fraction of field capacity) above which mineralisation rate is maximum;SD;PARAM;1;real;0.2;1;1;0 +hoptn;relative water content (fraction of field capacity) above which nitrification rate is maximum;SD;PARAM;1;real;0.2;1;1;0 +huilerec;minimal oil content of fruits at harvest (FW);g.g-1;PARTEC;1;real;0.1;1;1;0 +humcapil;threshold of soil gravimetric water content under which capillary rise occurs (dry soil);%;PARSOL;1;real;2;10;1;0 +humirac;A revoir: 1 = la fonction F_humirac atteint un plateau (ancien code) / 2 = la fonction n atteint pas de plateau (identique a la phase germination-levee);SD;PARAMV6;1;integer;0;2;1;0 +humirac_decisemis;relative soil moisture threshold above which sowing is possible (0 = no sensitivity to drought, 1 = highly sensitive);SD;PARTEC;1;real;0;1;1;0 +iamf;day when the stage AMF is reached (999 if not reached);julian_d;PARTEC;1;integer;1;999;1;0 +ichsl;soil number in the param.soil file;SD;USM;1;integer;1;999;1;0 +idebdorm;day of the dormancy entrance;julian_d;PARPLT;1;integer;1;999;1;0 +idor;day of the dormancy entrance;julian_d;java;1;integer;1;999;1;0 +idrp;day of the stage DRP (beginning of grain filling) when the stage is observed (else 999);julian_d;PARTEC;1;integer;1;999;1;0 +ifindorm;day of dormancy break;julian_d;PARPLT;1;integer;1;999;1;0 +iflo;day of anthesis;julian_d;PARTEC;1;integer;1;999;1;0 +ifwater;day of the end of simulation;julian_d;USM;1;integer;1;731;1;0 +ilan;day when the stage LAN is reached (999 if not observed);julian_d;PARTEC;1;integer;1;999;1;0 +ilax;day when the stage LAX is reached (999 if not observed);julian_d;PARTEC;1;integer;1;999;1;0 +ilev;day when the stage LEV is reached (999 if not observed);julian_d;PARTEC;1;integer;1;999;1;0 +imat;day when the stage MAT is reached (999 if not observed);julian_d;PARTEC;1;integer;1;999;1;0 +infil;infiltrability rate at the base of each soil layer (if codemacropor = 1);mm.d-1;PARSOL;6;real;0.1;100;1;0 +infil(1);infiltrability rate at the base of each soil layer (if codemacropor = 1);mm.d-1;PARSOL;6;real;0.1;100;1;0 +infil(2);infiltrability rate at the base of each soil layer (if codemacropor = 1);mm.d-1;PARSOL;6;real;0.1;100;1;0 +infil(3);infiltrability rate at the base of each soil layer (if codemacropor = 1);mm.d-1;PARSOL;6;real;0.1;100;1;0 +infil(4);infiltrability rate at the base of each soil layer (if codemacropor = 1);mm.d-1;PARSOL;6;real;0.1;100;1;0 +infil(5);infiltrability rate at the base of each soil layer (if codemacropor = 1);mm.d-1;PARSOL;6;real;0.1;100;1;0 +infil(6);infiltrability rate at the base of each soil layer (if codemacropor = 1);mm.d-1;PARSOL;6;real;0.1;100;1;0 +inflomax;maximal number of inflorescences per plant;SD;PARPLT;1;real;0;100;1;1 +infrecouv;ulai at the stage AMF (maximal rate of leaf growth);SD;PARPLT;1;real;0;3;1;0 +inilai;initial value of lai for cotyledons;m2.m-2;PARPLT;1;real;0;1;1;0 +iniprofil;option of smoothing out the initial mineral N and water profiles (spline function): 0 = no, 1 = yes;SD;PARAM;1;integer;0;1;1;0 +inngrain1;NNI below which net absorption of N during grain filling is maximal;SD;PARPLT;1;real;0.3;2;1;0 +inngrain2;NNI above which net absorption of N during grain filling is nil ;SD;PARPLT;1;real;0.3;2;1;0 +INNimin;INNI (instantaneous NNI) corresponding to INNmin;SD;PARPLT;1;real;0;1;1;0 +INNmin;minimum value of NNI possible for the crop;SD;PARPLT;1;real;0;1;1;0 +innsen;parameter of the N stress function active on senescence (INNsenes);SD;PARPLT;1;real;-2;1;1;1 +innturgmin;parameter of the N stress function active on leaf expansion (INNLAI);SD;PARPLT;1;real;-2;1;1;0 +interrang;width of the crop interrow;m;PARTEC;1;real;0;10;1;0 +iplt;date of sowing;julian_d;java;1;integer;1;731;1;0 +iplt0;date of sowing;julian_d;PARTEC;1;integer;1;731;1;0 +irec;date of harvest;julian_d;PARTEC;1;integer;1;731;1;0 +irecbutoir;latest date of harvest (imposed if the crop cycle is not finished at this date);julian_d;PARTEC;1;integer;1;731;1;0 +irmax;maximum harvest index;SD;PARPLT;1;real;0.2;1;1;0 +irrlev;amount of irrigation applied automatically on the sowing day to allow germination when the model calculates irrigation;mm;PARAM;1;real;0;50;1;0 +isen;day when the stage SEN is reached (999 if not observed);julian_d;PARTEC;1;integer;1;731;1;0 +isnu;date when the soil is bare;julian_d;java;1;integer;1;731;1;0 +iwater;starting day of the simulation;julian_d;USM;1;integer;1;731;1;0 +julapI;date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(1);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(10);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(11);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(12);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(13);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(14);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(15);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(16);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(17);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(18);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(19);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(2);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(20);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(21);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(22);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(23);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(24);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(25);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(26);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(27);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(28);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(29);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(3);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(30);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(4);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(5);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(6);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(7);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(8);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapI(9);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0 +julapN;date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(1);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(10);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(11);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(12);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(13);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(14);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(15);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(16);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(17);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(18);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(19);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(2);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(20);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(3);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(4);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(5);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(6);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(7);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(8);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +julapN(9);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0 +juldes;day of perennial crop destruction;julian_d;PARTEC;1;integer;1;731;1;0 +juleclair;day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0 +juleclair(1);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0 +juleclair(10);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0 +juleclair(2);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0 +juleclair(3);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0 +juleclair(4);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0 +juleclair(5);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0 +juleclair(6);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0 +juleclair(7);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0 +juleclair(8);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0 +juleclair(9);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0 +juleffeuil;day of leaf removal;julian_d;PARTEC;1;integer;1;731;1;0 +julfauche;date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(1);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(10);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(11);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(12);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(13);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(14);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(15);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(16);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(17);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(18);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(19);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(2);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(20);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(3);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(4);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(5);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(6);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(7);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(8);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julfauche(9);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0 +julouvre2;day (1/2) of opening the shelter;julian_d;PARTEC;1;integer;1;731;1;0 +julouvre3;day (2/2) of opening the shelter;julian_d;PARTEC;1;integer;1;731;1;0 +julres;date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0 +julres(1);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0 +julres(10);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0 +julres(11);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0 +julres(2);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0 +julres(3);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0 +julres(4);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0 +julres(5);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0 +julres(6);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0 +julres(7);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0 +julres(8);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0 +julres(9);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0 +julrogne;day of plant trimming;julian_d;PARTEC;1;integer;1;731;1;0 +jultaille;day of pruning;julian_d;PARTEC;1;integer;1;731;1;0 +jultrav;date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0 +jultrav(1);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0 +jultrav(10);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0 +jultrav(11);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0 +jultrav(2);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0 +jultrav(3);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0 +jultrav(4);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0 +jultrav(5);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0 +jultrav(6);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0 +jultrav(7);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0 +jultrav(8);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0 +jultrav(9);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0 +julvernal;day of initiation of vernalisation in perennial crops (between 1 and 365) ;julian_d;PARPLT;1;integer;1;731;1;0 +jvc;number of vernalising days or dormancy units;d;PARPLT;1;real;0;150;1;1 +jvcmini;minimum number of vernalising days ;d;PARPLT;1;real;0;20;1;0 +Kamm;affinity constant for NH4 in nitrification (if Michaelis_Menten formalism is used);mg.L-1;PARAM;1;real;1;100;1;0 +kbio;potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(1);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(10);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(11);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(12);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(13);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(14);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(15);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(16);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(17);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(18);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(19);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(2);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(20);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(21);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(3);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(4);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(5);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(6);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(7);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(8);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kbio(9);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0 +kcouvmlch;extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(1);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(10);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(11);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(12);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(13);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(14);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(15);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(16);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(17);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(18);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(19);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(2);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(20);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(21);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(3);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(4);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(5);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(6);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(7);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(8);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +kcouvmlch(9);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0 +Kd;Affinity constant for nitrate in denitrification;mg.L-1;PARAM;1;real;10;500;1;0 +kdesat;rate constant of de-saturation ;d-1 ;PARAM;1;real;1;20;1;0 +kdisrac;rate constant defining root length distribution throughout the profile;cm-2;PARPLT;1;real;2e-04;0.002;1;0 +khaut;extinction coefficient connecting LAI to crop height;SD;PARPLT;1;real;0.2;2;1;1 +Kmabs1;affinity constant of N uptake by roots for the fast uptake system;micromole.L-1;PARPLT;1;real;20;200;1;0 +Kmabs2;affinity constant of N uptake by roots for the low uptake system;micromole.L-1;PARPLT;1;real;4000;40000;1;0 +kmax;maximum crop coefficient for water requirements (= MET/PET);SD;PARPLT;1;real;0.5;4;1;0 +Kmin;minimum snow melting rate on 21 December;mm.degree_C-1.d-1;STATION;1;real;1.5;2.5;1;0 +krepracperm;parameter of biomass root partitioning : evolution of the ratio root/total (permanent trophic link);SD;PARPLT;1;real;1e-04;1;1;0 +krepracseu;parameter of biomass root partitioning : evolution of the ratio root/total (trophic link by thresholds);SD;PARPLT;1;real;1e-04;1;1;0 +ksol;soil hydraulic conductivity in the vicinity of mole drains;SD;PARSOL;1;real;1e-04;1;1;0 +kstemflow;extinction coefficient connecting LAI to stemflow;SD;PARPLT;1;real;0.1;2;1;0 +ktrou;extinction coefficient of PAR through the crop (used in the radiative transfer module);SD;PARPLT;1;real;0.1;2;1;1 +lai;initial leaf area index;m2.m-2;INIT;1;real;0;10;1;0 +lai0;initial leaf area index;m2.m-2;INIT;1;real;0;10;1;0 +laicomp;LAI above which competition between plants starts;m2.m-2;PARPLT;1;real;0;1;1;0 +laidebeff;LAI at the beginning of leaf removal;m2.m-2;PARTEC;1;real;1;10;1;0 +laieffeuil;LAI removed from the crop at day juleffeuil;m2.m-2;PARTEC;1;real;0.05;10;1;0 +laiplantule;LAI of plantlet at the plantation;m2.m-2;PARPLT;1;real;0;8;1;0 +lairesiduel;residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(1);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(10);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(11);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(12);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(13);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(14);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(15);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(16);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(17);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(18);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(19);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(2);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(20);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(3);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(4);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(5);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(6);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(7);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(8);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +lairesiduel(9);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0 +largrogne;trimmed width;m;PARTEC;1;real;0.1;2;1;0 +largtec;technical width;m;PARTEC;1;real;0.1;2;1;0 +latitude;latitude of the site;degree;STATION;1;real;-90;90;1;0 +locferti;soil depth at which fertiliser is applied;cm;PARTEC;1;integer;0;30;1;0 +locirrig;soil depth at which irrigation is applied;cm;PARTEC;1;integer;0;30;1;0 +longsperac;specific root length;cm.g-1;PARPLT;1;real;250;25000;1;0 +lvfront;root density at the root apex;cm.cm-3;PARPLT;1;real;0.02;1;1;0 +lvmax;maximum root length density in the top soil (used to calculate root mass);cm.cm-3;PARPLT;1;real;0;5;1;0 +lvopt;root length density (RLD) above which water and N uptake are maximum and independent of RLD;cm.cm-3;PARAM;1;real;0.2;1;1;0 +magrain;initial grain dry weight;g.m-2;INIT;1;real;0;5;1;0 +magrain0;initial grain dry weight;g.m-2;INIT;1;real;0;5;1;0 +maperenne;initial value of biomass of storage organs in perennial crops; t ha-1;INIT;1;real;0;30;1;0 +maperenne0;initial value of biomass of storage organs in perennial crops; t ha-1;INIT;1;real;0;30;1;0 +margerogne;topping occurs when plant height exceeds (hautrogne+margerogne) when automatic trimming is activated;m;PARTEC;1;real;0.01;1;1;0 +masec;initial plant biomass (if the option to simulate N and C reserves is not activated);t.ha-1;INIT;1;real;0;10;1;0 +masec0;initial plant biomass (if the option to simulate N and C reserves is not activated);t.ha-1;INIT;1;real;0;10;1;0 +masecmeta;biomass of the plantlet supposed to be composed of metabolic N;t.ha-1;PARPLT;1;real;0.1;1;1;0 +masecNmax;aerial biomass above which N dilution occurs (critical and maximal curves);t.ha-1;PARPLT;1;real;0.05;5;1;0 +masecnp;initial aerial biomass;t.ha-1;INIT;1;real;0;10;1;0 +masecnp0;initial aerial biomass;t.ha-1;INIT;1;real;0;10;1;0 +masecplantule;initial shoot biomass of plantlet;t.ha-1;PARPLT;1;real;0.002;4;1;0 +masvolcx;bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0 +masvolcx(1);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0 +masvolcx(10);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0 +masvolcx(2);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0 +masvolcx(3);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0 +masvolcx(4);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0 +masvolcx(5);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0 +masvolcx(6);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0 +masvolcx(7);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0 +masvolcx(8);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0 +masvolcx(9);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0 +max_pdenit;maximal value of the denitrification potential (if code_pdenit = 2);kg.ha-1.cm-1.d-1;PARAM;1;real;0;100;1;0 +maxazorac;mineral N concentration in soil above which root growth is maximum ;kg.ha-1.cm-1;PARPLT;1;real;0.1;5;1;0 +maxtalle;maximum tillers density per soil area;nb.m-2;PARPLT;1;real;0;10000;1;0 +min_pdenit;minimal value of the denitrification potential (if code_pdenit = 2);kg.ha-1.cm-1.d-1;PARAM;1;real;0;2;1;0 +minazorac;mineral N concentration in soil below which root growth is reduced ;kg.ha-1.cm-1;PARPLT;1;real;0;5;1;0 +minefnra;reduction factor on root growth when soil mineral N is limiting (< minazorac);SD;PARPLT;1;real;0;1;1;0 +mouillabil;maximum wettability of leaves;mm.m-2;PARPLT;1;real;0.05;3;1;0 +mouillabilmulch;maximum wettability of crop mulch;mm.t-1.ha;PARAM;5;real;0.05;5;1;0 +mouillabilmulch(1);maximum wettability of crop mulch;mm.t-1.ha;PARAM;5;real;0.05;5;1;0 +mouillabilmulch(2);maximum wettability of crop mulch;mm.t-1.ha;PARAM;5;real;0.05;5;1;0 +mouillabilmulch(3);maximum wettability of crop mulch;mm.t-1.ha;PARAM;5;real;0.05;5;1;0 +mouillabilmulch(4);maximum wettability of crop mulch;mm.t-1.ha;PARAM;5;real;0.05;5;1;0 +mouillabilmulch(5);maximum wettability of crop mulch;mm.t-1.ha;PARAM;5;real;0.05;5;1;0 +mscoupemini;minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(1);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(10);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(11);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(12);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(13);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(14);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(15);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(16);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(17);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(18);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(19);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(2);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(20);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(3);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(4);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(5);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(6);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(7);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(8);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +mscoupemini(9);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0 +msresiduel;residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(1);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(10);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(11);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(12);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(13);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(14);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(15);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(16);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(17);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(18);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(19);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(2);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(20);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(3);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(4);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(5);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(6);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(7);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(8);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +msresiduel(9);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0 +mulchbat;mulch depth at which a crust occurs (a value must be given but if in the plt.xml the vigueurbat parameter is equal to 1 then the parameter is inactive);cm;PARSOL;1;real;0;2;1;0 +nbans;number of years for a simulation;years;USM;1;integer;1;100;1;0 +nbcueille;number of fruit harvests during the crop cycle: 1 = one harvest, 2 = several harvests;code 1/2;PARTEC;1;integer;1;2;1;0 +nbfeuilplant;leaf number per plant when planting;pl-1;PARPLT;1;integer;0;10;1;0 +nbfgellev;leaf number at the end of the juvenile phase (frost sensitivity) ;pl-1;PARPLT;1;integer;1;5;1;0 +nbgrmax;maximum number of fruits per surface area;m-2;PARPLT;1;real;0;1e+06;1;1 +nbgrmin;minimum number of fruits per surface area;m-2 ;PARPLT;1;real;0;10000;1;1 +nbinflo;imposed number of inflorescences per plant;pl-1;PARPLT;1;real;1;1000;1;1 +nbinfloecl;number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0 +nbinfloecl(1);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0 +nbinfloecl(10);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0 +nbinfloecl(2);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0 +nbinfloecl(3);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0 +nbinfloecl(4);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0 +nbinfloecl(5);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0 +nbinfloecl(6);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0 +nbinfloecl(7);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0 +nbinfloecl(8);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0 +nbinfloecl(9);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0 +nbj_pr_apres_semis;number of days used to calculate rainfall requirement to start sowing (if codesemis is activated);d;PARTEC;1;integer;1;20;1;0 +nbjgerlim;maximum number of days after grain imbibition allowing full germination;d;PARPLT;1;integer;1;50;1;0 +nbjgrain;number of days used to compute the number of viable grains;d;PARPLT;1;integer;5;40;1;1 +nbjmaxapresrecolte;maximum number of days allowed for harvest (if the soil compaction option is activated);d;PARTEC;1;integer;0;90;1;0 +nbjmaxapressemis;maximum number of days allowed for sowing (if the soil compaction option is activated);d;PARTEC;1;integer;0;90;1;0 +nbjoursrrversirrig;number of days during which rainfall is replaced by irrigation in the soil after a sowing poquet;d;PARAMV6;1;integer;0;0;1;0 +nbjres;number of residue additions;SD;PARTEC;1;integer;0;8;1;0 +nbjseuiltempref;number of days without frost for sowing (if sowing decision option is activated);d;PARTEC;1;integer;1;60;1;0 +nbjtrav;number of tillage operations;SD;PARTEC;1;integer;0;8;1;0 +nboite;number of boxes or age classes of fruits used to calculate fruit growth for undeterminate crops ;SD;PARPLT;1;integer;1;20;1;0 +nbplantes;number of simulated plants;SD;USM/USMXML;1;integer;1;2;1;0 +NH3ref;NH3 concentration in the atmosphere;microgram.m-3;STATION;1;real;0;10;1;0 +nh4_min;minimum (fixed ?) NH4 concentration found in soil;mg.kg-1;PARAM;1;real;0;20;1;0 +NH4initf;initial amount of NH4-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0 +NH4initf(1);initial amount of NH4-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0 +NH4initf(2);initial amount of NH4-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0 +NH4initf(3);initial amount of NH4-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0 +NH4initf(4);initial amount of NH4-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0 +NH4initf(5);initial amount of NH4-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0 +nlevlim1;number of days after germination after which plant emergence is reduced;d;PARPLT;1;integer;1;100;1;0 +nlevlim2;number of days after germination after which plant emergence is impossible;d;PARPLT;1;integer;1;100;1;0 +Nmeta;proportion of metabolic N in the plantlet;%;PARPLT;1;real;0;100;1;0 +Nminres;proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0 +Nminres_pature;proportion of N mineral content in animal feces (FW);%;PARAMV6;1;real;0;100;1;0 +Nminres(1);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0 +Nminres(10);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0 +Nminres(11);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0 +Nminres(2);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0 +Nminres(3);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0 +Nminres(4);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0 +Nminres(5);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0 +Nminres(6);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0 +Nminres(7);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0 +Nminres(8);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0 +Nminres(9);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0 +NO3initf;initial amount of NO3-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0 +NO3initf(1);initial amount of NO3-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0 +NO3initf(2);initial amount of NO3-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0 +NO3initf(3);initial amount of NO3-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0 +NO3initf(4);initial amount of NO3-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0 +NO3initf(5);initial amount of NO3-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0 +nom;name of the USM;SD;USM;1;character;;;0;0 +nomsol;name of the soil;SD;USM/USMXML;1;character;;;0;0 +Norg;soil organic N content in the first soil layer (constant down to the depth profhum, dry soil);%;PARSOL;1;real;0.05;0.5;1;0 +Nreserve;maximal proportion of N in plant reserves (difference between the maximal and critical dilution curves);%;PARPLT;1;real;0;100;1;0 +numsol;soil number;SD;PARSOL/USM;1;integer;0;1000;1;0 +obstarac;soil depth at which root growth is stopped due to physical constraints;cm;PARSOL;1;real;10;1000;1;0 +ombragetx;change in air temperature in the northern hillslope of mountains (activated if codadret=2);degree_C;STATION;1;real;-5;5;1;0 +option_pature;option to activate grazing in pastures: 1 = yes, 2 = no;code 1/2;PARAMV6;1;integer;1;2;1;0 +orgeng;maximal amount of fertilizer N that can be immobilized in the soil (fraction for type 8);kg.ha-1;PARAM;8;real;0;100;1;0 +orgeng(1);maximal amount of fertilizer N that can be immobilized in the soil (fraction for type 8);kg.ha-1;PARAM;8;real;0;100;1;0 +orgeng(2);maximal amount of fertilizer N that can be immobilized in the soil (fraction for type 8);kg.ha-1;PARAM;8;real;0;100;1;0 +orgeng(3);maximal amount of fertilizer N that can be immobilized in the soil (fraction for type 8);kg.ha-1;PARAM;8;real;0;100;1;0 +orgeng(4);maximal amount of fertilizer N that can be immobilized in the soil (fraction for type 8);kg.ha-1;PARAM;8;real;0;100;1;0 +orgeng(5);maximal amount of fertilizer N that can be immobilized in the soil (fraction for type 8);kg.ha-1;PARAM;8;real;0;100;1;0 +orgeng(6);maximal amount of fertilizer N that can be immobilized in the soil (fraction for type 8);kg.ha-1;PARAM;8;real;0;100;1;0 +orgeng(7);maximal amount of fertilizer N that can be immobilized in the soil (fraction for type 8);kg.ha-1;PARAM;8;real;0;100;1;0 +orgeng(8);maximal amount of fertilizer N that can be immobilized in the soil (fraction for type 8);kg.ha-1;PARAM;8;real;0;100;1;0 +orientrang;direction of crop rows (relative to north);rad;PARTEC;1;real;0;6.28;1;0 +parazofmorte;C/N ratio of dead leaves when crop NNI = 1;g.g-1;PARPLT;1;real;10;20;1;0 +Parazoper;C/N ratio of perennial organs when crop NNI = 1;g.g-1;PARPLT;1;real;10;50;1;0 +parazorac;C/N ratio of roots when crop NNI = 1;g.g-1;PARPLT;1;real;10;50;1;0 +ParazoTmorte;C/N ratio of dead stems when crop NNI = 1;g.g-1;PARPLT;1;real;10;250;1;0 +parsurrg;fraction of photosynthetically active radiation in global radiation (PAR/RG);SD;PARAM;1;real;0.4;0.6;1;0 +patm;atmospheric pressure;hPa;STATION;1;real;800;1200;1;0 +penterui;runoff coefficient taking into account the plant mulch;SD;PARSOL;1;real;0;5;1;0 +pentinflores;parameter used to calculate the inflorescences number ;kg-1;PARPLT;1;real;0;10;1;1 +pentlaimax;parameter of the logistic curve of LAI growth ;SD;PARPLT;1;real;0;10;1;0 +pentrecouv;parameter of the logistic curve of soil cover rate;SD;PARPLT;1;real;0;10;1;0 +pertes_restit_ext;fraction of animal feces and urine not returned in grazed paddocks (e.g. in resting area, milking parlour, housing and paths/roads);SD;PARAMV6;1;real;0;1;1;0 +pgrainmaxi;maximum grain weight (at 0% water content);g;PARPLT;1;real;0;5;1;1 +pH;Initial soil pH (water solution);pH;PARSOL;1;real;4;9;1;0 +pH0;Initial soil pH (water solution);pH;PARSOL;1;real;4;9;1;0 +phiv;parameter allowing the calculation of the climate under shelter;SD;STATION;1;real;0;0.01;1;0 +phiv0;parameter allowing the calculation of the climate under shelter;SD;STATION;1;real;0;0.01;1;0 +pHmaxden;pH beyond which the N2O molar fraction in the denitrification process is minimum (<= ratiodenit);pH;PARAM;1;real;6;10;1;0 +pHmaxnit;soil pH above which nitrification rate is maximum;pH;PARAM;1;real;6;9;1;0 +pHmaxvol;soil pH above which NH3 volatilisation derived from fertiliser is maximum;pH;PARAM;1;real;6;9;1;0 +pHminden;pH below which the N2O molar fraction in the denitrification process is maximum (100% );pH;PARAM;1;real;3;6.5;1;0 +pHminnit;soil pH below which nitrification is nil;pH;PARAM;1;real;3;6;1;0 +pHminvol;soil pH below which NH3 volatilisation derived from fertiliser is nil;pH;PARAM;1;real;3;6;1;0 +phobase;basal photoperiod ;hours;PARPLT;1;real;0;24;1;1 +phobasesen;photoperiod under which the photoperiodic stress affects the lifespan of leaves;hours;PARPLT;1;real;1;12;1;0 +phosat;saturating photoperiod;hours;PARPLT;1;real;0;24;1;1 +pHvols;parameter used to calculate the variation of soil pH after the addition of slurry;pH;PARAM;1;real;5;9;1;0 +phyllotherme;thermal duration between the apparition of two successive leaves on the main stem;degree_d;PARPLT;1;real;10;150;1;0 +plNmin;minimal amount of rain required to start an automatic N fertilisation;mm.d-1;PARAM;1;real;5;30;1;0 +pluiebat;minimal amount of rain required to create a soil crust (a value must be given but if in the plt.xml the vigueurbat parameter is equal to 1 then the parameter is inactive);mm.d-1;PARSOL;1;real;5;100;1;0 +pminruis;minimal amount of rain required to produce runoff ;mm.d-1;PARAM;1;real;2;50;1;0 +Pns;density of the new snow;kg.m-3;STATION;1;real;10;200;1;0 +potgermi;soil water potential below which seed imbibition is impeded;MPa;PARPLT;1;real;-4.2;-0.1;1;0 +primingmax;maximum priming ratio (relative to SOM decomposition rate);SD;PARAM;1;real;1;5;1;0 +prof;snow cover threshold for snow insulation;cm;STATION;1;real;5;15;1;0 +profdenit;soil depth at which denitrification is active (if codedenit is activated);cm;PARSOL;1;real;10;40;1;0 +profdrain;depth of mole drains;cm;PARSOL;1;real;20;200;1;0 +profhum;maximum soil depth with an active biological activity;cm;PARSOL;1;real;10;150;1;0 +profhumrecolteuse;soil depth at which moisture is considered to allow harvesting (if soil compaction is activated);cm;PARTEC;1;real;0;100;1;0 +profhumsemoir;soil depth at which moisture is considered to allow sowing (if soil compaction is activated);cm;PARTEC;1;real;0;100;1;0 +profimper;upper depth of the impermeable layer (from the soil surface);cm;PARSOL;1;real;50;200;1;0 +proflabour;minimal soil depth for ploughing (if soil compaction is activated);cm;PARAM;1;real;0;100;1;0 +profmes;depth of measurement of the soil water reserve;cm;PARTEC;1;real;10;1000;1;0 +profnod;maximum depth at which N2 fixation by legume crops is possible;cm;PARPLT;1;real;10;50;1;0 +profres;upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0 +profres(1);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0 +profres(10);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0 +profres(11);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0 +profres(2);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0 +profres(3);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0 +profres(4);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0 +profres(5);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0 +profres(6);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0 +profres(7);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0 +profres(8);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0 +profres(9);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0 +profsem;depth of sowing;cm;PARTEC;1;real;0;10;1;0 +proftrav;maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0 +proftrav(1);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0 +proftrav(10);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0 +proftrav(11);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0 +proftrav(2);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0 +proftrav(3);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0 +proftrav(4);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0 +proftrav(5);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0 +proftrav(6);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0 +proftrav(7);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0 +proftrav(8);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0 +proftrav(9);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0 +proftravmin;minimal soil depth for chisel tillage (if soil compaction is activated);cm;PARAM;1;real;0;100;1;0 +prophumtassrec;soil moisture content (fraction of field capacity) above which compaction may occur and delay harvest;SD;PARAM;1;real;0.8;1.8;1;0 +prophumtasssem;soil moisture content (fraction of field capacity) above which compaction may occur and delay sowing;SD;PARAM;1;real;0.8;1.8;1;0 +propjgermin;minimal fraction of the duration nbjgerlim when the temperature is higher than the temperature threshold Tdmax ;%;PARPLT;1;real;0;1;1;0 +proprac;ratio of root mass to aerial mass at harvest;SD;PARAM;1;real;0.05;0.5;1;0 +propracfmax;fraction of fine roots emitted in the layer 0-1 cm (in length, maximum value over the root profile);SD;PARPLT;1;real;0.51;0.95;1;0 +Propres;maximal fraction of the biomass reserves that can be mobilized from aerial organs in all crops;SD;PARPLT;1;real;0;1;1;0 +propresP;maximal fraction of the biomass reserves that can be mobilized from storage organs in perennials;SD;PARPLT;1;real;0;1;1;0 +PropresPN;maximal fraction of the N reserves that can be mobilized from storage organs in perennials;SD;PARPLT;1;real;0;1;1;0 +ps;initial density of the snow cover;kg m-3;INIT;1;real;10;1000;1;0 +ps0;initial density of the snow cover;kg m-3;INIT;1;real;10;1000;1;0 +psihucc;soil water potential corresponding to field capacity ;MPa;PARAM;1;real;-5;-0.1;1;0 +psihumin;soil water potential corresponding to wilting point;MPa;PARAM;1;real;-5;-0.1;1;0 +psisto;potential of stomatal closing (absolute value);bars;PARPLT;1;real;1;25;1;1 +psiturg;potential of the beginning of decrease of the cellular extension (absolute value);bars;PARPLT;1;real;1;15;1;1 +q;cumulative soil evaporation above which evaporation rate is decreased ;mm;PARSOL;1;real;0;50;1;0 +q0;cumulative soil evaporation above which evaporation rate is decreased ;mm;PARSOL;1;real;0;50;1;0 +q10;Q10 used for the dormancy break calculation ;SD;PARPLT;1;real;1.5;3.5;1;0 +qmulchdec;maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(1);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(10);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(11);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(12);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(13);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(14);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(15);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(16);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(17);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(18);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(19);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(2);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(20);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(21);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(3);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(4);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(5);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(6);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(7);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(8);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchdec(9);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis;amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0;amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(1);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(10);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(11);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(12);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(13);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(14);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(15);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(16);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(17);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(18);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(19);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(2);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(20);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(21);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(3);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(4);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(5);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(6);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(7);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(8);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +qmulchruis0(9);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0 +QNperenne;initial value of nitrogen amount in storage organs in perennial crops ;kg ha-1;INIT;1;real;0;500;1;0 +QNperenne0;initial value of nitrogen amount in storage organs in perennial crops ;kg ha-1;INIT;1;real;0;500;1;0 +QNplante;initial N amount in the plant (if the option to simulate N and C reserves is not activated);t.ha-1;INIT;1;real;0;10;1;0 +QNplante0;initial N amount in the plant (if the option to simulate N and C reserves is not activated);t.ha-1;INIT;1;real;0;10;1;0 +QNplantenp;initial N amount in non-perennial organs of the plant;kg.ha-1;INIT;1;real;0;200;1;0 +QNplantenp0;initial N amount in non-perennial organs of the plant;kg.ha-1;INIT;1;real;0;200;1;0 +QNpltminINN;minimal amount of N in the plant required to compute INN;kg.ha-1;PARAM;1;real;0;50;1;0 +qres;mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0 +qres(1);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0 +qres(10);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0 +qres(11);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0 +qres(2);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0 +qres(3);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0 +qres(4);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0 +qres(5);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0 +qres(6);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0 +qres(7);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0 +qres(8);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0 +qres(9);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0 +Qtot_N;total amount of mineral N fertilizer applications ;kg.ha-1;PARTEC;1;real;0;200;1;0 +ra;aerodynamic resistance (used in volatilization module with the PET approach);s.m-1;STATION;1;real;10;70;1;0 +rapdia;ratio of coarse roots diameter to fine roots diameter;SD;PARPLT;1;real;1;9.12;1;0 +rapforme;ratio of thickness to width of the crop shape (negative when the base of the form < top);SD;PARPLT;1;real;-5;5;1;0 +rapNmindec;slope of the linear relationship between the fraction of mineral N available for residue decomposition and the amount of C in decomposing residues;g.g-1;PARAMV6;1;real;0;0.01;1;0 +rapsenturg;threshold soil water content active to simulate water senescence stress as a proportion of the turgor stress;SD;PARPLT;1;real;0.5;1.5;1;1 +ratiodenit;fraction of N2O emitted per unit of N denitrified;SD;PARAM;1;real;0;1;1;0 +ratiodurvieI;life span of early leaves expressed as a fraction of the life span of the last leaves emitted DURVIEF;SD;PARPLT;1;real;0;1;1;0 +ratiol;water stress index below which irrigation is started in automatic mode (0 in manual mode);SD;PARTEC;1;real;0.2;1;1;0 +ratiolN;nitrogen stress index below which fertilisation is started in automatic mode (0 in manual mode);SD;PARAMV6;1;real;0.2;1;1;0 +rationit;fraction of N2O emitted per unit of N nitrified;SD;PARAM;1;real;0;1;1;0 +ratiosen;fraction of senescent biomass (relative to total biomass);SD;PARPLT;1;real;0;1;1;0 +rayon;average radius of the roots;cm ;PARPLT;1;real;0.005;0.07;1;0 +rdrain;radius of the mole drains;cm;PARAM;1;real;1;100;1;0 +remobres;fraction of daily remobilisable C reserves;d-1;PARPLT;1;real;0;0.5;1;0 +repracpermax;maximum root biomass relative to total biomass (permanent trophic link);SD;PARPLT;1;real;0.1;0.9;1;0 +repracpermin;minimum root biomass relative to total biomass (permanent trophic link);SD;PARPLT;1;real;0.1;0.9;1;0 +repracseumax;maximum root biomass relative to total biomass (trophic link by thresholds);SD;PARPLT;1;real;0.1;0.9;1;0 +repracseumin;minimum root biomass relative to total biomass (trophic link by thresholds);SD;PARPLT;1;real;0.1;0.9;1;0 +resk;parameter 1/2 used to calculate profres (if code_auto_profres = 2): profres = proftrav *(1-exp(-resk.(proftrav-resz));cm-1;PARTEC;1;real;0.05;0.25;1;0 +resplmax;maximal reserve of biomass;t.ha-1;PARPLT;1;real;0;100;1;0 +ressuite;type of crop residue: roots / whole_crop / straw+roots / stubble+roots / prunings;SD;PARTEC;1;character;;;0;0 +restemp;initial biomass of metabolic reserves in the perennial organs;t.ha-1;INIT;1;real;0;15;1;0 +restemp0;initial biomass of metabolic reserves in the perennial organs;t.ha-1;INIT;1;real;0;15;1;0 +restit;option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(1);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(10);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(11);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(12);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(13);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(14);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(15);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(16);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(17);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(18);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(19);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(2);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(20);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(3);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(4);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(5);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(6);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(7);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(8);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +restit(9);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0 +resz;parameter 2/2 used to calculate profres (if code_auto_profres = 2): profres = proftrav *(1-exp(-resk.(proftrav-resz));cm;PARTEC;1;real;1;10;1;0 +rsmin;minimal stomatal resistance of leaves;s.m-1;PARPLT;1;real;20;500;1;0 +RTD;root tissue density;g.cm-3;PARPLT;1;real;0.05;0.8;1;0 +rugochisel;roughness length of bare soil after chisel tillage (if soil compaction is activated);m;PARTEC;1;real;0.01;0.2;1;0 +rugolabour;roughness length of bare soil after mouldboard ploughing (if soil compaction is activated);m;PARTEC;1;real;0.01;0.2;1;0 +ruisolnu;fraction of runoff (relative to total rainfall) in a bare soil ;SD;PARSOL;1;real;0;1;1;0 +scale_tdenitopt;parameter related to the range of optimum temperature for denitrification;SD;PARAM;1;real;10;40;1;0 +scale_tnitopt;parameter related to the range of optimum temperature for nitrification;SD;PARAM;1;real;5;30;1;0 +Sdepth;initial snow cover depth;m;INIT;1;real;0;3;1;0 +Sdepth0;initial snow cover depth;m;INIT;1;real;0;3;1;0 +Sdry;initial water in solid state in the snow cover;mm;INIT;1;real;0;300;1;0 +Sdry0;initial water in solid state in the snow cover;mm;INIT;1;real;0;300;1;0 +sea;specific area of fruit envelops;cm2.g-1;PARPLT;1;real;0;300;1;0 +sensanox;index of anoxia sensitivity (0 = insensitive, 1 = highly sensitive);SD;PARPLT;1;real;0;1;1;0 +sensiphot;index of photoperiod sensitivity (1 = insensitive, 0 = highly sensitive);SD;PARPLT;1;real;0;1;1;1 +sensrsec;index of root sensitivity to drought (1 = insensitive, 0 = highly sensitive);SD;PARPLT;1;real;0;1;1;0 +separateurrapport;column separator in rapport.sti file;SD;PARAM;1;character;;;0;0 +seuilLAIapex;maximal value of LAI+LAIapex when LAIapex is > 0;m2.m-2;PARPLT;1;real;0;10;1;0 +seuilmortalle;relative transpiration threshold to calculate tiller mortality;mm.d-1;PARPLT;1;real;0;10;1;0 +seuilreconspeupl;tiller density below which the entire population will not be regenerated;m-2;PARPLT;1;real;0;4000;1;0 +sigmadistalle;parameter used for calculating tiller mortality (gamma law) ;SD;PARPLT;1;real;0;0.5;1;0 +slamax;maximum SLA (specific leaf area) of green leaves;cm2.g-1;PARPLT;1;real;50;500;1;1 +slamin;minimum SLA (specific leaf area) of green leaves;cm2.g-1;PARPLT;1;real;50;500;1;0 +spfrmax;maximal sources/sinks value allowing the trophic stress calculation for fruit onset;SD;PARPLT;1;real;0.7;2;1;0 +spfrmin;minimal sources/sinks value allowing the trophic stress calculation for fruit onset;SD;PARPLT;1;real;0;1;1;0 +splaimax;maximal sources/sinks value allowing the trophic stress calculation for leaf growing;SD;PARPLT;1;real;0.7;2;1;0 +splaimin;minimal value of ratio sources/sinks for the leaf growth ;SD;PARPLT;1;real;0.01;1;1;0 +stade;crop stage at the beginning of simulation;SD;INIT;1;character;;;0;0 +stade0;crop stage at the beginning of simulation;SD;INIT;1;character;;;0;0 +stadebbchamf;equivalent stage in BBCH-scale (amf= maximum acceleration of leaf growth, end of juvenile phase) ;SD;PARPLT;1;character;;;0;0 +stadebbchdebdes;equivalent stage in BBCH-scale (debdes= date of onset of water dynamics in harvested organs);SD;PARPLT;1;character;;;0;0 +stadebbchdrp;equivalent stage in BBCH-scale (drp = starting date of filling of harvested organs);SD;PARPLT;1;character;;;0;0 +stadebbchfindorm;equivalent stage in BBCH-scale (end of dormancy);SD;PARPLT;1;character;;;0;0 +stadebbchflo;equivalent stage in BBCH-scale (flowering);SD;PARPLT;1;character;;;0;0 +stadebbchger;equivalent stage in BBCH-scale (germination);SD;PARPLT;1;character;;;0;0 +stadebbchlax;equivalent stage in BBCH-scale (lax = maximum leaf area index, end of leaf growth );SD;PARPLT;1;character;;;0;0 +stadebbchlev;equivalent stage in BBCH-scale (emergence);SD;PARPLT;1;character;;;0;0 +stadebbchmat;equivalent stage in BBCH-scale (maturity);SD;PARPLT;1;character;;;0;0 +stadebbchnou;equivalent stage in BBCH-scale (fruit set);SD;PARPLT;1;character;;;0;0 +stadebbchplt;equivalent stage in BBCH-scale (sowing);SD;PARPLT;1;character;;;0;0 +stadebbchrec;equivalent stage in BBCH-scale (harvest);SD;PARPLT;1;character;;;0;0 +stadebbchsen;equivalent stage in BBCH-scale (senescence);SD;PARPLT;1;character;;;0;0 +stadecoupedf;stage of automatic cut for forage crops;SD;PARTEC;1;character;;;0;0 +stage_end_irrigauto;phenological stage for ending automatic irrigations (plt, ger, lev, amf, lax, drp ,flo, sen, rec, mat, debdorm, findorm);SD;PARTEC;1;character;;;0;0 +stage_start_irrigauto;phenological stage for starting automatic irrigations (plt, ger, lev, amf, lax, drp ,flo, sen, rec, mat, debdorm, findorm);SD;PARTEC;1;character;;;0;0 +stamflax;cumulative thermal time between the stages AMF (maximum acceleration of leaf growth, end of juvenile phase) and LAX (maximum leaf area index, end of leaf growth );degree_d;PARPLT;1;real;0;6000;1;1 +stdnofno;cumulative thermal time between the beginning and the end of nodulation;degree_d;PARPLT;1;real;0;500;1;0 +stdordebour;cumulative thermal time between the dormancy break and the bud break ;degree_d;PARPLT;1;real;0;20000;1;1 +stdrpdes;cumulative thermal time between the DRP stage (starting date of filling of harvested organs) and DEBDES (date of onset of water dynamics in harvested organs);degree_d;PARPLT;1;real;0;900;1;1 +stdrpmat;cumulative thermal time between the stages DRP (starting date of filling of harvested organs) and MAT (maturity);degree_d;PARPLT;1;real;0;2000;1;1 +stdrpnou;cumulative thermal time between the stages DRP (starting date of filling of harvested organs) and NOU (end of setting);degree_d;PARPLT;1;real;0;6000;1;1 +stemflowmax;maximal fraction of rainfall flowing down along the stems ;SD;PARPLT;1;real;0;1;1;0 +stflodrp;cumulative thermal time between FLO (anthesis) and DRP (starting date of filling of harvested organs) (only for indication);degree_d;PARPLT;1;real;0;500;1;1 +stfnofvino;cumulative thermal time between the end of the nodulation and the end of the nodule life ;degree_d;PARPLT;1;real;0;500;1;0 +stlaxsen;cumulative thermal time between the stages LAX (maximum leaf area index, end of leaf growth ) and SEN (beginning of leaf senescence) ;degree_d;PARPLT;1;real;0;6000;1;1 +stlevamf;cumulative thermal time between the stages LEV (emergence) and AMF (maximum acceleration of leaf growth, end of juvenile phase) ;degree_d;PARPLT;1;real;0;6000;1;1 +stlevdno;cumulative thermal time between emergence and the beginning of nodulation ;degree_d;PARPLT;1;real;0;500;1;0 +stlevdrp;cumulative thermal time between the stages LEV (emergence) and DRP (starting date of filling of harvested organs);degree_d;PARPLT;1;real;0;6000;1;1 +stoprac;stage when root growth stops (LAX= maximum leaf area index, end of leaf growth or SEN=beginning of leaf senescence);SD;PARPLT;1;character;;;0;0 +stpltger;cumulative thermal time allowing germination;degree_d;PARPLT;1;real;0;100;1;0 +stressdev;maximum phasic delay allowed due to stresses ;SD;PARPLT;1;real;0.1;0.9;1;0 +stsenlan;cumulative thermal time between the stages SEN (beginning of leaf senescence) and LAN;degree_d;PARPLT;1;real;0;6000;1;1 +stubblevegratio;fraction of unharvested biomass stubble to vegetative biomass at harvest;SD;PARTEC;1;real;0;1;1;0 +sucrerec;minimal sugar concentration at harvest (/ fresh matter);g.g-1 FW;PARTEC;1;real;1e-04;0.5;1;0 +surfapex;equivalent surface of a transpiring apex;m2;PARPLT;1;real;0;1e-04;1;0 +surfouvre1;relative area of the shelter opened the first day of opening;SD;PARTEC;1;real;0.1;0.8;1;0 +surfouvre2;relative area of the shelter opened the second day of opening;SD;PARTEC;1;real;0.1;0.8;1;0 +surfouvre3;relative area of the shelter opened the third day of opening;SD;PARTEC;1;real;0.1;0.8;1;0 +Swet;initial water in liquid state in the snow cover;mm;INIT;1;real;0;300;1;0 +Swet0;initial water in liquid state in the snow cover;mm;INIT;1;real;0;300;1;0 +swfacmin;minimal value for drought stress index (turfac, swfac, senfac);SD;PARPLT;1;real;0;1;1;1 +SWrf;degree day temperature index for snow refreezing;mm.degree_C-1.d-1;STATION;1;real;0;0.01;1;0 +tauxexportfauche;fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(1);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(10);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(11);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(12);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(13);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(14);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(15);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(16);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(17);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(18);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(19);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(2);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(20);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(3);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(4);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(5);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(6);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(7);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(8);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxexportfauche(9);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0 +tauxmortresP;mortality rate of perennial organs ;d-1;PARPLT;1;real;0;0.5;1;0 +tauxrecouvkmax;soil cover rate corresponding to the maximal crop coefficient for water requirement (plant surface / soil surface);m2.m-2;PARPLT;1;real;0.5;2;1;0 +tauxrecouvmax;maximal soil cover rate (plant surface / soil surface);m2.m-2;PARPLT;1;real;0.5;2;1;0 +tcmax;maximum temperature at which growth ceases;degree_C;PARPLT;1;real;10;50;1;0 +tcmin;minimum temperature at which growth ceases;degree_C;PARPLT;1;real;-10;15;1;0 +tcxstop;temperature beyond which foliar growth stops;degree_C;PARPLT;1;real;0;100;1;0 +tdebgel;temperature below which frost affects plant growth;degree_C;PARPLT;1;real;-5;5;1;0 +tdenitopt_gauss;optimum temperature for denitrification;degree_C;PARAM;1;real;0;60;1;0 +tdmax;maximum temperature above which development stops;degree_C;PARPLT;1;real;15;40;1;0 +tdmaxdeb;maximal temperature for hourly calculation of phasic duration between dormancy and bud breaks;degree_C;PARPLT;1;real;0;40;1;0 +tdmin;minimum temperature below which development stops;degree_C;PARPLT;1;real;-10;15;1;0 +tdmindeb;minimal thermal threshold for hourly calculation of phasic duration between dormancy and bud breaks;degree_C;PARPLT;1;real;0;40;1;0 +tdoptdeb;optimal temperature for calculation of phasic duration between dormancy and bud breaks;degree_C;PARPLT;1;real;0;30;1;0 +temax;maximal temperature above which plant growth stops;degree_C;PARPLT;1;real;15;40;1;0 +temin;minimum temperature for development;degree_C;PARPLT;1;real;-10;15;1;1 +tempdeshyd;increase in fruit dehydration rate due to the increase in crop temperature (Tcult-Tair);%.degree_C-1;PARPLT;1;real;1e-04;0.05;1;0 +tempfauche;cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(1);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(10);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(11);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(12);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(13);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(14);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(15);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(16);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(17);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(18);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(19);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(2);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(20);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(3);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(4);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(5);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(6);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(7);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(8);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempfauche(9);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0 +tempnod1;temperature parameter (1/4) used to calculate N fixation by legumes ;degree_C;PARPLT;1;real;-10;40;1;0 +tempnod2;temperature parameter (2/4) used to calculate N fixation by legumes ;degree_C;PARPLT;1;real;-10;40;1;0 +tempnod3;temperature parameter (3/4) used to calculate N fixation by legumes ;degree_C;PARPLT;1;real;-10;40;1;0 +tempnod4;temperature parameter (4/4) used to calculate N fixation by legumes ;degree_C;PARPLT;1;real;-10;40;1;0 +teopt;optimal temperature (1/2) for plant growth;degree_C;PARPLT;1;real;10;30;1;1 +teoptbis;optimal temperature (2/2) for plant growth;degree_C;PARPLT;1;real;10;30;1;0 +tfroid;optimal temperature for vernalisation;degree_C;PARPLT;1;real;-5;10;1;0 +tgelflo10;temperature resulting in 10% of frost damages on flowers and fruits;degree_C;PARPLT;1;real;-25;0;1;0 +tgelflo90;temperature resulting in 90% of frost damages on flowers and fruits;degree_C;PARPLT;1;real;-25;0;1;0 +tgeljuv10;temperature resulting in 10% of frost damage on LAI (juvenile stage);degree_C;PARPLT;1;real;-25;0;1;1 +tgeljuv90;temperature resulting in 90% of frost damage on LAI (juvenile stage);degree_C;PARPLT;1;real;-25;0;1;0 +tgellev10;temperature resulting in 10% of frost damages on plantlet;degree_C;PARPLT;1;real;-25;0;1;1 +tgellev90;temperature resulting in 90% of frost damages on plantlet;degree_C;PARPLT;1;real;-25;0;1;0 +tgelveg10;temperature resulting in 10% of frost damage on LAI (adult stage);degree_C;PARPLT;1;real;-25;0;1;1 +tgelveg90;temperature resulting in 90% of frost damage on LAI (adult stage);degree_C;PARPLT;1;real;-25;0;1;0 +tgmin;minimum temperature below which emergence is stopped;degree_C;PARPLT;1;real;-10;15;1;0 +tigefeuil;ratio stem (structural part)/leaf;SD;PARPLT;1;real;0;3;1;1 +tigefeuilcoupe;ratio stem (structural part)/leaf on the cutting day;SD;PARPLT;1;real;0;3;1;0 +tletale;lethal temperature for the plant;degree_C;PARPLT;1;real;-30;-1;1;0 +tmaxremp;maximal temperature above which grain filling stops;degree_C;PARPLT;1;real;10;40;1;0 +tmaxseuil;maximum temperature when snow cover is higher than prof;degree_C;STATION;1;real;-0.5;0.5;1;0 +Tmf;threshold temperature for snow melting;degree_C;STATION;1;real;0;1;1;0 +tmin_mineralisation;minimal temperature for decomposition of humified organic matter;degree_C;PARAM;1;;-3;0;1;0 +tminremp;minimal temperature below which grain filling stops;degree_C;PARPLT;1;real;0;20;1;0 +tminseuil;minimum temperature when snow cover is higher than prof;degree_C;STATION;1;real;-1;0;1;0 +tnitmax;maximal temperature above which nitrification stops;degree_C;PARAM;1;real;30;50;1;0 +tnitmin;minimal temperature below which nitrification stops;degree_C;PARAM;1;real;-10;20;1;0 +tnitopt;optimal temperature (1/2) for nitrification;degree_C;PARAM;1;real;10;40;1;0 +tnitopt_gauss;optimal temperature (1/2) for nitrification;degree_C;PARAM;1;real;0;50;1;0 +tnitopt2;optimal temperature (2/2) for nitrification;degree_C;PARAM;1;real;20;45;1;0 +transplastic;transmission coefficient of the plastic shelter;SD;PARTEC;1;real;0.3;0.9;1;0 +trefh;reference temperature for decomposition of humified organic matter;degree_C;PARAM;1;real;-10;20;1;0 +trefr;reference temperature for decomposition of organic residues;degree_C;PARAM;1;real;-10;20;1;0 +trmax;maximum air temperature (tmax) above which all precipitation is assumed to be rain;degree_C;STATION;1;real;0.5;1.5;1;0 +tsmax ;maximum air temperature (tmax) below which all precipitation is assumed to be snow;degree_C;STATION;1;real;-3;-0.5;1;0 +tustressmin;water stress index (min(turfac,inns)) below which there is an extra LAI senescence;SD;PARPLT;1;real;0.3;1;1;0 +typecailloux;Pebbles type: 1 = Beauce limestone1, 2 = Beauce limestone, 3 = Lutetian limestone, 4 = Lutetian Brackish marl and limestone, 5 = morainic gravels, 6 = unweathered flint, sandstone or granite, 7 = weathered granite, 8 = Jurassic limestone 9 = Pebbles from Magneraud;SD;PARSOL;5;integer;1;10;1;0 +typecailloux(1);Pebbles type: 1 = Beauce limestone1, 2 = Beauce limestone, 3 = Lutetian limestone, 4 = Lutetian Brackish marl and limestone, 5 = morainic gravels, 6 = unweathered flint, sandstone or granite, 7 = weathered granite, 8 = Jurassic limestone 9 = Pebbles from Magneraud;SD;PARSOL;5;integer;1;10;1;0 +typecailloux(2);Pebbles type: 1 = Beauce limestone1, 2 = Beauce limestone, 3 = Lutetian limestone, 4 = Lutetian Brackish marl and limestone, 5 = morainic gravels, 6 = unweathered flint, sandstone or granite, 7 = weathered granite, 8 = Jurassic limestone 9 = Pebbles from Magneraud;SD;PARSOL;5;integer;1;10;1;0 +typecailloux(3);Pebbles type: 1 = Beauce limestone1, 2 = Beauce limestone, 3 = Lutetian limestone, 4 = Lutetian Brackish marl and limestone, 5 = morainic gravels, 6 = unweathered flint, sandstone or granite, 7 = weathered granite, 8 = Jurassic limestone 9 = Pebbles from Magneraud;SD;PARSOL;5;integer;1;10;1;0 +typecailloux(4);Pebbles type: 1 = Beauce limestone1, 2 = Beauce limestone, 3 = Lutetian limestone, 4 = Lutetian Brackish marl and limestone, 5 = morainic gravels, 6 = unweathered flint, sandstone or granite, 7 = weathered granite, 8 = Jurassic limestone 9 = Pebbles from Magneraud;SD;PARSOL;5;integer;1;10;1;0 +typecailloux(5);Pebbles type: 1 = Beauce limestone1, 2 = Beauce limestone, 3 = Lutetian limestone, 4 = Lutetian Brackish marl and limestone, 5 = morainic gravels, 6 = unweathered flint, sandstone or granite, 7 = weathered granite, 8 = Jurassic limestone 9 = Pebbles from Magneraud;SD;PARSOL;5;integer;1;10;1;0 +typsol;soil type;SD;PARSOL;1;character;;;0;0 +udlaimax;ulai from which the rate of leaf growth decreases ;SD;PARPLT;1;real;1;3;1;0 +upvttapI;thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(1);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(10);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(11);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(12);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(13);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(14);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(15);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(16);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(17);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(18);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(19);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(2);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(20);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(21);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(22);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(23);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(24);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(25);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(26);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(27);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(28);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(29);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(3);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(30);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(4);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(5);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(6);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(7);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(8);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapI(9);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0 +upvttapN;thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(1);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(10);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(11);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(12);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(13);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(14);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(15);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(16);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(17);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(18);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(19);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(2);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(20);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(3);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(4);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(5);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(6);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(7);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(8);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +upvttapN(9);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0 +usm;name of the USM;SD;USMXML;1;character;;;0;0 +Vabs2;N uptake rate at which fertilizer loss is divided by 2;kg.ha-1.d-1;PARAM;1;real;0.5;5;1;0 +variete;cultivar number corresponding to the cultivar name in the plant file;SD;PARTEC;1;integer;1;200;1;0 +vigueurbat;plant vigor index allowing to emerge through a soil crust ;SD;PARPLT;1;real;1e-04;1;1;0 +vitirazo;rate of increase of the N harvest index vs time;g.g-1.d-1;PARPLT;1;real;0.001;0.04;1;1 +vitircarb;rate of increase of the C harvest index vs time;g.g-1.d-1;PARPLT;1;real;0.001;0.02;1;1 +vitircarbT;rate of increase of the C harvest index vs thermal time;g.g-1.degree_d-1;PARPLT;1;real;5e-05;0.002;1;1 +vitno;rate of increase of the potential biological fixation rate after nodule onset, per unit of thermal time;nb.degree_d-1;PARPLT;1;real;0.001;0.01;1;0 +vitprophuile;rate of increase of oil harvest index vs time;g.g-1.d-1;PARPLT;1;real;0.001;0.01;1;1 +vitpropsucre;rate of increase of sugar harvest index vs time;g sugar.g-1.d-1;PARPLT;1;real;0.001;0.01;1;1 +vitreconspeupl;rate of regeneration of the tiller population;degree_C-1;PARPLT;1;real;0;0.1;1;0 +vlaimax;ulai at the inflexion point of the function DELTAI=f(ULAI);SD;PARPLT;1;real;1.5;2.5;1;0 +Vmax1;maximum specific N uptake rate with the low affinity transport system;micromole.cm-1.h-1;PARPLT;1;real;2e-04;0.01;1;0 +Vmax2;maximum specific N uptake rate with the high affinity transport system;micromole.cm-1.h-1;PARPLT;1;real;0.002;0.1;1;0 +vnitmax;maximum nitrification rate (if Michaelis-Menten formalism is used);mg.kg-1.d-1;PARAM;1;real;0;100;1;0 +voleng;maximal fraction of mineral fertilizer that can be volatilized ;SD;PARAM;8;real;0;1;1;0 +voleng(1);maximal fraction of mineral fertilizer that can be volatilized ;SD;PARAM;8;real;0;1;1;0 +voleng(2);maximal fraction of mineral fertilizer that can be volatilized ;SD;PARAM;8;real;0;1;1;0 +voleng(3);maximal fraction of mineral fertilizer that can be volatilized ;SD;PARAM;8;real;0;1;1;0 +voleng(4);maximal fraction of mineral fertilizer that can be volatilized ;SD;PARAM;8;real;0;1;1;0 +voleng(5);maximal fraction of mineral fertilizer that can be volatilized ;SD;PARAM;8;real;0;1;1;0 +voleng(6);maximal fraction of mineral fertilizer that can be volatilized ;SD;PARAM;8;real;0;1;1;0 +voleng(7);maximal fraction of mineral fertilizer that can be volatilized ;SD;PARAM;8;real;0;1;1;0 +voleng(8);maximal fraction of mineral fertilizer that can be volatilized ;SD;PARAM;8;real;0;1;1;0 +vpotdenit;potential rate of denitrification for the whole denitrifying layer;kg.ha-1.d-1;PARSOL;1;real;0.3;10;1;0 +wdata1;name of the first climate file;SD;USM;1;character;;;0;0 +wdata2;name of the last climate file;SD;USM;1;character;;;0;0 +wfpsc;WFPS (Water filled porosity space) threshold above which denitrification occurs;SD;PARAM;1;real;0.3;1;1;0 +Wh;N/C ratio of soil humus;g.g-1;PARAM;1;real;0.05;0.14;1;0 +Xorgmax;maximal amount of N immobilised in soil derived from the mineral fertilizer ;kg.ha-1;PARAM;1;real;100;500;1;0 +y0msrac;minimal amount of root mass at harvest (when aerial biomass is nil);t.ha-1;PARAM;1;real;0;5;1;0 +yres;Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(1);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(10);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(11);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(12);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(13);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(14);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(15);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(16);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(17);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(18);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(19);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(2);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(20);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(21);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(3);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(4);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(5);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(6);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(7);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(8);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +yres(9);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0 +z0solnu;roughness length of bare soil;m;PARSOL;1;real;0.01;0.2;1;0 +zesx;maximal soil depth affected by soil evaporation;cm;PARSOL;1;real;10;150;1;0 +zlabour;depth of ploughing (reference profile);cm;PARPLT;1;real;0;100;1;0 +zpente;depth at which root density is 50% of the surface root density (reference profile);cm ;PARPLT;1;real;10;200;1;0 +zprlim;maximum depth of the root profile (reference profile);cm ;PARPLT;1;real;10;200;1;0 +zr;reference height of meteorological data measurement;m;STATION;1;real;2;10;1;0 +zrac;initial depth of root apex of the crop;cm;INIT;1;real;0;200;1;0 +zrac0;initial depth of root apex of the crop;cm;INIT;1;real;0;200;1;0 +zracplantule;initial depth of root apex of the plantlet;cm;PARPLT;1;real;0;200;1;0