view config/inputs.csv @ 8:cbd23f8906db draft default tip

"planemo upload for repository https://forgemia.inra.fr/redelac commit 53d19ea66881dcd272711c98940626fa6bb58075"
author siwaa
date Thu, 24 Oct 2024 17:45:22 +0000
parents 7f8f474a7bd7
children
line wrap: on
line source

aangst;coefficient of the Angstrom relationship for extraterrestrial radiation;SD;STATION;1;real;0;0.9;1;0
abscission;fraction of senescent leaves falling to the soil;SD;PARPLT;1;real;0;1;1;0
aclim;climatic component to calculate actual soil evaporation (Brisson & Perrier, 1991);mm;STATION;1;real;4;25;1;0
adens;Interplant competition parameter;SD;PARPLT;1;real;-2;0;1;1
adfol;parameter determining the leaf density evolution within the chosen shape;m-1;PARPLT;1;real;-10;10;1;0
adil;parameter of the critical dilution curve [Nplante]=adil MS^(-bdil);% ;PARPLT;1;real;1;7;1;0
adilmax;parameter of the maximum dilution curve [Nplante]=adilmax MS^(-bdilmax);% ;PARPLT;1;real;3;10;1;0
afpf;parameter of the logistic function defining sink strength of fruits (indeterminate growth) : relative fruit age at which growth is maximal;SD;PARPLT;1;real;0.01;1;1;0
afruitpot;maximal number of set fruits per inflorescence and per degree day (indeterminate growth);fruits.inflorescence-1.degree_d-1;PARPLT;1;real;0.5;20;1;1
ahres;parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(1);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(10);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(11);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(12);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(13);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(14);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(15);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(16);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(17);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(18);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(19);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(2);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(20);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(21);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(3);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(4);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(5);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(6);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(7);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(8);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
ahres(9);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);SD;PARAM;21;real;0;100;1;0
akres;parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(1);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(10);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(11);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(12);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(13);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(14);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(15);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(16);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(17);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(18);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(19);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(2);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(20);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(21);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(3);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(4);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(5);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(6);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(7);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(8);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
akres(9);parameter of organic residues decomposition: kres=akres+bkres/CsurNres;d-1;PARAM;21;real;-0.2;1;1;0
aks;parameter of calculation of the energetic loss between the inside and the outside of a greenhouse ;W.m-2.K-1;STATION;1;real;0.01;100;1;0
albedo;albedo of the bare dry soil;SD;PARSOL;1;real;0.05;0.6;1;0
albedomulchplastique;albedo of plastic cover;SD;PARTEC;1;real;0.05;0.8;1;0
albedomulchresidus;albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(1);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(10);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(11);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(12);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(13);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(14);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(15);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(16);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(17);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(18);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(19);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(2);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(20);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(21);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(3);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(4);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(5);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(6);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(7);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(8);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albedomulchresidus(9);albedo of plant mulch;SD;PARAM;21;real;0.05;0.8;1;0
albveg;albedo of the vegetation;SD;STATION;1;real;0.05;0.3;1;0
allocfrmax;maximal daily allocation to fruits;SD;PARPLT;1;real;0.05;1;1;0
alloperirac;allocation rate of the seed reserves (perisperm) to the rootlet growth;SD;PARPLT;1;real;0.05;1;1;0
alphaCO2;coefficient accounting for the modification of radiation use efficiency in case of atmospheric CO2 increase;SD;PARPLT;1;real;1;2;1;0
alphapH;maximal soil pH variation per unit of inorganic N added with slurry;kg-1 ha;PARAM;1;real;0.001;0.02;1;0
alphaphot;parameter of photoperiodic effect on leaf lifespan;SD;PARPLT;1;real;0;1000;1;0
alphapt;parameter of Priestley-Taylor formula;SD;STATION;1;real;1;2;1;0
altinversion;altitude of inversion of the thermal gradient;m;STATION;1;real;0;2000;1;0
altisimul;altitude of simulated site;m;STATION;1;real;0;2000;1;0
altistation;altitude of the input metorological station ;m;STATION;1;real;0;2000;1;0
ampfroid;semi thermal amplitude for vernalising effect;degree_C;PARPLT;1;real;1;30;1;0
anitcoupe;amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(1);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(10);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(11);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(12);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(13);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(14);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(15);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(16);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(17);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(18);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(19);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(2);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(20);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(3);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(4);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(5);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(6);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(7);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(8);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
anitcoupe(9);amount of mineral N added by fertiliser application at each cut of a forage crop;kg.ha-1;PARTEC;20;real;0;400;1;0
argi;clay content after decarbonation;%;PARSOL;1;real;0;60;1;0
awb;parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(1);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(10);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(11);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(12);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(13);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(14);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(15);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(16);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(17);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(18);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(19);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(2);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(20);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(21);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(3);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(4);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(5);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(6);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(7);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(8);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
awb(9);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;0;100;1;0
bangst;coefficient of the Angstrom s relationship for extraterrestrial radiation;SD;STATION;1;real;0;1;1;0
bdens;minimal plant density above which interplant competition starts;m-2;PARPLT;1;real;1;200;1;1
bdil;parameter of the critical dilution curve [Nplante]=adil MS^(-bdil);SD;PARPLT;1;real;0.01;0.8;1;0
bdilmax;parameter of the maximum dilution curve [Nplante]=adilmax MS^(-bdilmax);SD;PARPLT;1;real;0.01;0.8;1;0
belong;parameter of the curve of coleoptile elongation;degree_d-1;PARPLT;1;real;0.005;0.04;1;0
beta;parameter of increase of maximal transpiration when a water stress occurs ;SD;PARAM;1;real;1;2;1;0
bformnappe;coefficient for the water table shape (artificially drained soil);SD;PARAM;1;real;0;1;1;0
bfpf;parameter of the logistic curve defining sink strength of fruits (indeterminate growth): maximum growth rate relative to maximum fruit weight;SD;PARPLT;1;real;0;30;1;0
bhres;parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(1);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(10);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(11);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(12);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(13);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(14);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(15);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(16);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(17);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(18);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(19);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(2);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(20);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(21);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(3);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(4);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(5);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(6);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(7);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(8);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
bhres(9);parameter of organic residues humification: hres=1-ahres*CsurNres/(bhres+CsurNres);g.g-1;PARAM;21;real;-5;2000;1;0
biorognem;minimal crop biomass removed when topping (automatic calculation);t.ha-1;PARTEC;1;real;0;10;1;0
bkres;potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(1);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(10);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(11);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(12);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(13);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(14);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(15);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(16);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(17);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(18);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(19);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(2);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(20);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(21);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(3);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(4);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(5);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(6);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(7);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(8);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bkres(9);potential rate of decomposition of organic residues: kres=akres+bkres/CsurNres;g.g-1;PARAM;21;real;-2;2;1;0
bks;parameter of calculation of the energetic lost between the inside and the outside of a greenhouse ;W.m-2.K-1;STATION;1;real;0;100;1;0
bwb;parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(1);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(10);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(11);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(12);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(13);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(14);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(15);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(16);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(17);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(18);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(19);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(2);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(20);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(21);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(3);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(4);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(5);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(6);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(7);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(8);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
bwb(9);parameter determining C/N ratio of biomass during organic residues decomposition: CsurNbio=awb+bwb/CsurNres;g.g-1;PARAM;21;real;-500;0;1;0
cadencerec;number of days between two harvests;d;PARTEC;1;integer;1;30;1;0
cailloux;volumetric content of pebbles per soil layer;%;PARSOL;5;real;0;100;1;0
cailloux(1);volumetric content of pebbles per soil layer;%;PARSOL;5;real;0;100;1;0
cailloux(2);volumetric content of pebbles per soil layer;%;PARSOL;5;real;0;100;1;0
cailloux(3);volumetric content of pebbles per soil layer;%;PARSOL;5;real;0;100;1;0
cailloux(4);volumetric content of pebbles per soil layer;%;PARSOL;5;real;0;100;1;0
cailloux(5);volumetric content of pebbles per soil layer;%;PARSOL;5;real;0;100;1;0
calc;total carbonate content;%;PARSOL;1;real;0;100;1;0
capiljour;capillary rise upward water flux;mm.d-1;PARSOL;1;real;0.1;20;1;0
celong;parameter of the plantlet elongation curve;SD;PARPLT;1;real;1;10;1;0
cfes;parameter defining the soil contribution to evaporation versus depth ;SD;PARSOL;1;real;0.5;4;1;0
cfpf;parameter of the first potential growth phase of fruit, corresponding to an exponential type function describing the cell division phase;SD;PARPLT;1;real;0.1;100;1;0
cgrain;slope of the relationship between grain number and growth rate ;t-1.m2.d;PARPLT;1;real;100;5000;1;0
cgrainv;fraction of the maximal number of grains when growth rate is zero;SD;PARPLT;1;real;0;1;1;0
cgrainv0;fraction of the maximal number of grains when growth rate is zero;SD;PARPLT;1;real;0;1;1;0
cielclair;fraction of sunny hours allowing the inversion of thermal gradient with altitude;SD;STATION;1;real;0;1;1;0
cmax_pdenit;Soil organic carbon concentration above which denitrification potential is constant and maximum;g.kg-1;PARAM;1;real;3;40;1;0
cmin_pdenit;Soil organic carbon concentration below which denitrification potential is constant and minimum;g.kg-1;PARAM;1;real;0;3;1;0
CNgrainrec;minimal N content of grain at harvest ;g.g-1;PARTEC;1;real;0;1;1;0
CNresmax;maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(1);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(10);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(11);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(12);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(13);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(14);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(15);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(16);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(17);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(18);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(19);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(2);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(20);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(21);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(3);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(4);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(5);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(6);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(7);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(8);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmax(9);maximum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin;minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(1);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(10);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(11);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(12);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(13);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(14);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(15);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(16);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(17);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(18);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(19);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(2);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(20);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(21);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(3);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(4);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(5);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(6);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(7);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(8);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
CNresmin(9);minimum value of C/N ratio of organic residue;g.g-1;PARAM;21;real;3;300;1;0
codabri;option to activate cropping under shelter: 1 = no, 2 = yes;code 1/2;PARTEC;1;integer;1;2;1;0
codadret;option to calculate mountain climate taking into account the orientation: 1 = south, 2 = north;code 1/2;STATION;1;integer;1;2;1;0
codaltitude;option to activate the calculation of the climate in altitude: 1 = no, 2 = yes;code 1/2;STATION;1;integer;1;2;1;0
codazofruit;option to activate the direct effect of N plant status on the fruit/grain number: 1 = no, 2 = yes;code 1/2;PARPLT;1;integer;1;2;1;0
codazorac;option to activate the effect of N stress on root partitioning within the soil profile: 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0
codcaleffeuil;option to calculate leaf removal by thinning: 1 = proportion of leaf removed (effeuil), 2 = lai minimal (laieffeuil);code 1/2;PARTEC;1;integer;1;2;1;0
codcalinflo;option to calculate the inflorescences number: 1 = read in param.par, 2 = calculated at the amf stage;code 1/2;PARPLT;1;integer;1;2;1;0
codcalrogne;option to calculate topping: 1 = forced topping, 2 = automatic calculation;code 1/2;PARTEC;1;integer;1;2;1;0
codcueille;option to define harvest type: 1 =single harvest (cutting), 2 = multiple harvests (picking);code 1/2;PARTEC;1;integer;1;2;1;0
code_acti_reserve;option to activate the simulation of Nitrogen and Carbon reserves: 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0
code_auto_profres;option to define profres: 1 = profres read in tec file, 2 = profres calculated as proftrav *(1-exp(-resk.(proftrav-resz));code 1/2;PARTEC;1;integer;1;2;1;0
code_CsurNsol_dynamic;option to activate the dynamic calculation of CsurNsol: 1 = yes, 2 = no;code 1/2;PARAMV6;1;integer;1;2;1;0
code_diff_root;option to activate the simulation of 2 root classes: 1 =yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0
code_hautfauche_dyn;option to activate dynamic calculation of residual LAI, biomass and N content after cutting: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0
code_hourly_wfps_denit;option to activate hourly WFPS calculation for denitrification: 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0
code_hourly_wfps_nit;option to activate hourly WFPS calculation for nitrification: 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0
code_pdenit;option to define the denitrification potential: 1 = read in soil parameter, 2 = calculated from soil organic carbon concentration;code 1/2;PARAM;1;integer;1;2;1;0
code_ratiodenit;option to define the N2O/(N2+N2O) ratio of denitrification: 1 = constant, 2 = variable;code 1/2;PARAM;1;integer;1;2;1;0
code_rationit;option to define the N2O/(N2+N2O) ratio of nitrification: 1 = constant, 2 = variable;code 1/2;PARAM;1;integer;1;2;1;0
code_rootdeposition;code to simulate N demand and allocation to roots and their turn-over during crop growth cycle: 1 = daily deposition, 2 = deposition only at harvest;code 1/2;PARPLT;1;integer;1;2;1;0
code_stress_root;option to activate the preferential allocation of biomass to roots in case of water or N stress: 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0
code_tnit;option to define the temperature function for nitrification: 1 = piecewise linear, 2 = gaussian;code 1/2;PARAM;1;integer;1;2;1;0
code_vnit;option to define the nitrification rate dependence on NH4: 1 = first order, 2 = Michaelis-Menten;code 1/2;PARAM;1;integer;1;2;1;0
code_WangEngel;option to activate the effect of temperature on development units for emergence according to Wang et Engel (1998): 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0
codeactimulch;option to activate the mulch effect at soil surface: 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0
codeaumin;option to activate the harvest according to grain/fruit water content: 1 = water content > minimum threshold, 2  = water content < maximum threshold;code 1/2;PARTEC;1;integer;1;2;1;0
codebeso;option to calculate water requirements: 1 = k.ETP approach, 2= resistive method;code 1/2;PARPLT;1;integer;1;2;1;0
codebfroid;option to calculate chilling requirements: 1 = no need, 2 = vernalising days, 3 = development stage;code 1/2/3;PARPLT;1;integer;1;3;1;0
codecailloux;option to take into account pebbles in the water and N balances: 1 = yes, 2 = no;code 0/1;PARSOL;1;integer;0;1;1;0
codecalferti;option to activate the automatic calculation of fertilisation rate: 1 = yes, 2 = no;code 1/2;PARAMV6;1;integer;1;2;1;0
codecalirrig;option to activate the automatic calculation of irrigation requirements: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0
codecaltemp;option to activate the use of crop temperature for phasic development calculation: 1 = empirical relation, 2 = energy balance;code 1/2;STATION;1;integer;1;2;1;0
codeclaircie;option to simulate fruit removal: 1 = no, 2 = yes (for smallest fruits) ;code 1/2;PARTEC;1;integer;1;2;1;0
codeclichange;option to activate climate change: 1 = no, 2 =yes;code 1/2;STATION;1;integer;1;2;1;0
codedate_irrigauto;option to activate the beginning and the ending dates in case of automatic irrigation: 1 = dates, 2= crop stages,  3 = nothing;code 1/2/3;PARTEC;1;integer;1;3;1;0
codedateappH2O;option to calculate irrigation dates according to sum of temperatures: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0
codedateappN;option to calculate mineral fertilizer application dates according to sum of temperatures: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0
codedecirecolte;option to activate moisture and frost effects on harvest decision: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0
codedecisemis;option to activate the moisture effect on harvest decision: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0
codedenit;option to activate the calculation of denitrification model: 1 = yes, 2 = no;code 1/2;PARSOL;1;integer;1;2;1;0
codedisrac;option to define root profile in soil: 1 =  standard root distribution, 2 = root emission proportional to root biomass;code 1/2;PARPLT;1;integer;1;2;1;0
codedormance;option to calculate dormancy and chilling requirements: 1 = forcing, 2 = Richardson, 3 = Bidabe;code 1/2/3;PARPLT;1;integer;1;3;1;0
codeDST;option to activate the variations in physical soil conditions due to tillage: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0
codeDSTnbcouche;option to define the number of compacted soil layers: 1 = one layer, 2 = two layers;code 1/2;PARTEC;1;integer;1;2;1;0
codeDSTtass;option to activate the soil compaction at sowing and harvest: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0
codedyntalle;option to activate the module simulating tillers dynamics: 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0
codeetp;option to calculate PET: 1 = forced Penman, 2 = calculated Penman, 3= Shuttleworth & Wallace, 4 = Priestley & Taylor;code 1/2/3/4;STATION;1;integer;1;4;1;0
codefauche;option to activate cuts of forage crops: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0
codefente;option to activate an additional water compartment for swelling soils: 1 = yes, 2 = no;code 0/1;PARSOL;1;integer;0;1;1;0
codeffeuil;option to activate plant thinning: 1 = no, 2 = yes;code 1/2;PARTEC;1;integer;1;2;1;0
codefixpot;option to calculate the maximal symbiotic fixation: 1 = fixed value read in the plant file,  2 = depends on growth rate;code 1/2;PARPLT;1;integer;1;3;1;0
codefracappN;option to activate split applications of N fertiliser: 1 = absolute value, 2 = fraction of total N application;code 1/2;PARTEC;1;integer;1;2;1;0
codefrmur;option to define the maturity status of the fruits in the variable CHARGEFRUIT: 1 = including ripe fruits (last box N),  2 = excluding ripe fruits (first N-1 boxes);code 1/2;PARAM;1;integer;1;2;1;0
codefxn;option to define the effect of soil nitrate on N fixation: 1 = no effect, 2 = effect of nitrate amount, 3 = effect of nitrate concentration;code 1/2/3;PARAM;1;integer;1;3;1;0
codegdh;option to define the time step used for calculating development units: 1 = hourly, 2 = daily;code 1/2;PARPLT;1;integer;1;2;1;0
codegdhdeb;option to define the time step used for calculating bud break date: 1 = daily, 2 = hourly growing degrees;code 1/2;PARPLT;1;integer;1;2;1;0
codegermin;option to simulate germination: 1 = germination phase, 2 = immediate germination;code 1/2;PARPLT;1;integer;1;2;1;0
codeh2oact;option to activate water stress effect on crop growth: 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0
codehypo;option to simulate plant emergency: 1 = phase of hypocotyl growth (sown crops),  2 = plantation of plantlets;code 1/2;PARPLT;1;integer;1;2;1;0
codeindetermin;option to simulate the type of leaf growth and fruit growth: 1 = determinate, 2 = undeterminate;code 1/2;PARPLT;1;integer;1;2;1;0
codeinitprec;option to activate reset of initial conditions in case of chained simulations: 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0
codeINN;option to compute NNI: 1 = cumulative NNI, 2 = instantaneous NNI;code 1/2;PARPLT;1;integer;1;2;1;0
codeinnact;option to activate N stress effect on root length growth: 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0
codeintercept;option to simulate rainfall interception by leaves: 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0
codeir;option to calculate the ratio grain weight/total biomass: 1 = proportional to time, 2 = proportional to thermal time;code 1/2;PARPLT;1;integer;1;2;1;0
codejourdes;option to simulate perennial crops destruction;code 1/2;PARTEC;1;integer;1;2;1;0
codelaitr;option to calculate the intercepted radiation according to: 1 = LAI, 2 = soil cover;code 1/2;PARPLT;1;integer;1;2;1;0
codelegume;option to define if the crop is a legume fixing N: 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0
codemacropor;option to activate calculation of water flux in soil macroporosity: 1 = yes, 2 = no;code 1/2;PARSOL;1;integer;1;2;1;0
codemicheur;option to calculate hourly microclimatic outputs (output file humidite.sti): 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0
codeminopt;option to simulate a bare soil with a constant water content: 1 = yes, 2 = no ;code 0/1;PARAM;1;integer;0;1;1;0
codemodfauche;option to define the cutting mode: 1 = automatic calculation depending on phenologic and trophic state,  2 = pre-established calendar in days, 3 = pre-established calendar in degree-days;code 1/2/3;PARTEC;1;integer;1;3;1;0
codemodlsnow;option to calculate snow variables: 1 = unused, 2 = unused, 3 = Snow model 3;code 1/2/3;STATION;1;integer;1;3;1;0
codemonocot;option to define the type of plant: 1 = monocot, 2 =dicot;code 1/2;PARPLT;1;integer;1;2;1;0
codemontaison;option to stop the reserve limitation after stem elongation in grassland: 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0
codemortalracine;option to calculate the mass of dead roots after a cut: 1 = based on masec, 2 = based on masectot;code 1/2;PARPLT;1;integer;1;2;1;0
codemsfinal;option to define if the biomass and yield are conserved after harvest: 1 = yes, 2 = no (values set at 0);code 1/2;PARAM;1;integer;1;2;1;0
codenitrif;option to activate the nitrification model: 1 = yes, 2 = no;code 1/2;PARSOL;1;integer;1;2;1;0
codeNmindec;option to activate the limitation of residues decomposition due lack of mineral N: 1 = yes, 2 = no;code 1/2;PARAMV6;1;integer;1;2;1;0
codeoutscient;option to write outputs files with scientific format: 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0
codepaillage;option to define soil cover: 1 = no cover, 2 = plastic cover partly covering the soil ;code 1/2;PARTEC;1;integer;1;2;1;0
codepalissage;option to define if the plant is fixed onto a vertical support: 1 = no, 2 =yes;code 1/2;PARTEC;1;integer;1;3;1;0
codeperenne;option to define the crop perenniality: 1 = annual crop, 2 = perennial crop;code 1/2;PARPLT;1;integer;1;2;1;0
codephot;option to define plant photoperiodism: 1 = yes, 2 = no;code1/2;PARPLT;1;integer;1;2;1;0
codephot_part;simulation of the effect of decreasing photoperiod on biomass allocation : 1 = yes, 2 = no;code1/2;PARPLT;1;integer;1;2;1;0
codeplante;option to define the coding name of the plant (3 characters);SD;PARPLT;1;character;;;0;0
codeplisoleN;option to define N requirements at the beginning of the cycle: 1 = dense plant population, 2 = isolated plants;code 1/2;PARPLT;1;integer;1;2;1;0
codepluiepoquet;option to replace rainfall by irrigation at poquet depth in the case of poquet sowing: 1 = yes, 2 = no ;code 1/2;PARAMV6;1;integer;1;2;1;0
codeprofmes;option of soil depth for calculating water and N stocks (1 = profmes,  2 = soil depth);code 1/2;PARAM;1;integer;1;2;1;0
coderacine;option to define the calculation of root growth and extension: 1 = standard profile, 2 = root length density;code 1/2;PARPLT;1;integer;1;2;1;0
coderecolteassoc;option to harvest intercrop species simultaneously, at the physiological maturity date of the earliest one: 1 = no, 2 = yes;code 1/2;PARTEC;1;integer;1;2;1;0
coderemontcap;option to activate capillary rise: 1 = yes, 2 = no;code 1/2;PARSOL;1;integer;1;2;1;0
coderes;residue type: 1=mature crop,  2=cover crop,  3=Manure,  4=Green compost,  5=Sewage sludge,  6=Vinasse,  7=Horn,  8=vineyard prunings,  9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0
coderes_pature;residue type used to simulate bovine feces: 1-10;code 1/10;PARAMV6;1;integer;1;10;1;0
coderes(1);residue type: 1=mature crop,  2=cover crop,  3=Manure,  4=Green compost,  5=Sewage sludge,  6=Vinasse,  7=Horn,  8=vineyard prunings,  9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0
coderes(10);residue type: 1=mature crop,  2=cover crop,  3=Manure,  4=Green compost,  5=Sewage sludge,  6=Vinasse,  7=Horn,  8=vineyard prunings,  9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0
coderes(2);residue type: 1=mature crop,  2=cover crop,  3=Manure,  4=Green compost,  5=Sewage sludge,  6=Vinasse,  7=Horn,  8=vineyard prunings,  9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0
coderes(3);residue type: 1=mature crop,  2=cover crop,  3=Manure,  4=Green compost,  5=Sewage sludge,  6=Vinasse,  7=Horn,  8=vineyard prunings,  9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0
coderes(4);residue type: 1=mature crop,  2=cover crop,  3=Manure,  4=Green compost,  5=Sewage sludge,  6=Vinasse,  7=Horn,  8=vineyard prunings,  9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0
coderes(5);residue type: 1=mature crop,  2=cover crop,  3=Manure,  4=Green compost,  5=Sewage sludge,  6=Vinasse,  7=Horn,  8=vineyard prunings,  9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0
coderes(6);residue type: 1=mature crop,  2=cover crop,  3=Manure,  4=Green compost,  5=Sewage sludge,  6=Vinasse,  7=Horn,  8=vineyard prunings,  9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0
coderes(7);residue type: 1=mature crop,  2=cover crop,  3=Manure,  4=Green compost,  5=Sewage sludge,  6=Vinasse,  7=Horn,  8=vineyard prunings,  9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0
coderes(8);residue type: 1=mature crop,  2=cover crop,  3=Manure,  4=Green compost,  5=Sewage sludge,  6=Vinasse,  7=Horn,  8=vineyard prunings,  9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0
coderes(9);residue type: 1=mature crop,  2=cover crop,  3=Manure,  4=Green compost,  5=Sewage sludge,  6=Vinasse,  7=Horn,  8=vineyard prunings,  9=pig slurry, 10=rhizomes;code 1 to 10;PARTEC;10;integer;1;21;1;0
coderetflo;option to activate the effect of water stress on development before the stage DRP (filling of harvested organs): 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0
codernet;option to calculate net radiation: 1 = Brunt method, 2 = Cellier method;code 1/2;STATION;1;integer;1;2;1;0
codesensibilite;option to activate the sensitivity analysis version of the model: 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0
codeseprapport;option to select the column separator in the rapport.sti output file: 1 = space separator, 2 = separator indicated in the file rapport.sti;code 1/2;PARAM;1;integer;1;2;1;0
codesimul;option to define the type of crop simulation: culture or 0 (LAI calculated by the model), feuille or 1 (LAI forced);SD / code 0/1;USM/USMXML;1;character/integer;;;0;0
codesnow;option to activate the snow module: 1 = yes, 2 = no;code 1/2;PARAM;1;integer;1;2;1;0
codestade;option to force one or several development stages: 1 = yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0
codestrphot;option to activate the photoperiodic stress on lifespan (1 = yes, 2 = no);code 1/2;PARPLT;1;integer;1;2;1;0
codesuite;option to simulate several successive USM: 0 = no, 1 = yes;code 0/1;USM;1;integer;0;0;1;0
codeSWDRH;optin to calculate the duration of surface wetness: 1=yes , 2 = no;code 1/2;PARAMV6;1;integer;1;2;1;0
codesymbiose;option to calculate symbiotic N fixation: 1 = based on critical dilution curve, 2 = specific calculation of N fixation;code 1/2;PARAM;1;integer;1;2;1;0
codetaille;option to activate pruning: 1 = no, 2 = yes;code 1/2;PARTEC;1;integer;1;2;1;0
codetemp;option to calculate thermal time for plant growth: 1 = based on air temperature, 2 = based on crop temperature;code 1/2;PARPLT;1;integer;1;2;1;0
codetempfauche;option to define the reference temperature to compute cutting sum of temperatures: 1 = upvt, 2 = udevair;code 1/2;PARTEC;1;integer;1;2;1;0
codetemprac;option to calculate thermal time for root growth: 1 = crop temperature, 2 = soil temperature;code 1/2;PARPLT;1;integer;1;2;1;0
codetesthumN;option to define automatic N fertilisation calculation: 1 = based on rainfall, 2 = based on soil water content;code 1/2;PARAMV6;1;integer;1;2;1;0
codetradtec;option to activate the effect of crop structure on radiation transfer: 1 =yes, 2 = no;code 1/2;PARTEC;1;integer;1;2;1;0
codetranspitalle;option to choose the ratio used to calculate tiller mortality: 1 = et/etm, 2 = epc2/eopC;code 1/2;PARPLT;1;integer;1;2;1;0
codetransrad;option to calculate radiation interception: 1 = Beer law, 2 = radiative transfer;code 1/2;PARPLT;1;integer;1;2;1;0
codetremp;option to activate heat effect on grain filling: 1 = yes, 2 = no;code 1/2;PARPLT;1;integer;1;2;1;0
codetrosee;option to calculate hourly dew temperature : 1 = linear interpolation, 2 = sinusoidal interpolation (Debele Bekele et al, 2007);code 1/2;PARAMV6;1;integer;1;2;1;0
codetycailloux;code for pebble type;code 1 to 10;PARAM;1;integer;1;10;1;0
codetypeng;code for fertiliser type;code 1 to 8;PARAM;1;integer;1;8;1;0
codetypres;code for organic residue;code 1 to 10;PARAM;1;integer;1;21;1;0
codevar;code for cultivar name;SD;PARPLT;1;character;;;0;1
codgelflo;option to activate the frost effect at anthesis: 1 = no, 2 = yes;code 1/2;PARPLT;1;integer;1;2;1;0
codgeljuv;option to activate the frost effect on LAI at the juvenile stage: 1 = no, 2 = yes;code 1/2;PARPLT;1;integer;1;2;1;0
codgellev;option to activate the frost effect on plantlet growth: 1 = no, 2 = yes;code 1/2;PARPLT;1;integer;1;2;1;0
codgelveg;option to activate the frost effect on LAI at adult stage: 1 = no, 2 = yes;code 1/2;PARPLT;1;integer;1;2;1;0
codhauteff;option to define the height of leaf removal (if the thinning option is activated): 1 = bottom of the canopy, 2 = top of the canopy;code 1/2;PARTEC;1;integer;1;2;1;0
codhnappe;option to calculate the watertable level : 1 = mean height, 2 = height at the distance distdrain;code 1/2;PARAM;1;integer;1;2;1;0
codlainet;option to calculate the LAI: 1 = net LAI, 2 = difference between gross LAI and senescent LAI;code 1/2;PARPLT;1;integer;1;2;1;0
codlocferti;option to define localized fertilisation: 1 = at soil surface, 2 = deeper in the soil;code 1/2;PARTEC;1;integer;1;2;1;0
codlocirrig;option to define localized irrigation: 1= above the foliage, 2= below the foliage above the soil, 3 = in the soil;code 1/2/3;PARTEC;1;integer;1;3;1;0
codoptim;option to activate the optimisation code: 0 = no,  1 = optimisation for the main crop, 2 = optimisation for the associated crop;code 0/1/2;USM;1;integer;0;2;1;0
codrainage;option to simulate artificial drainage: 1 = yes, 2 = no;code 1/2;PARSOL;1;integer;0;1;1;0
codrecolte;option to define harvest strategy: 1 = at physiological maturity, 2 = according to water content, 3 = according to sugar content, 4 = according to nitrogen content, 5 = according to oil content;code 1 to 5;PARTEC;1;integer;1;5;1;0
codrognage;option to activate foliage control by trimming: 1 = no, 2 = yes;code 1/2;PARTEC;1;integer;1;2;1;0
codtrophrac;option to activate a trophic effect on root length growth: 1 = permanent link, 2 = link by thresholds, 3 = no effect;code 1/2/3;PARPLT;1;integer;1;3;1;0
coef_calcul_doseN;crop N concentration below which there is no N return to the soil through animal urine;g.kg-1;PARAMV6;1;real;1;30;1;0
coef_calcul_qres;crop N concentration used to calculate animal feces from animal grass dry matter intake;g.kg-1;PARAMV6;1;real;1;10;1;0
coefamflax;multiplier coefficient applied to the thermal time requirement between stages AMF and LAX;SD;PARPLT;1;real;1;2;1;0
coefb;parameter defining the radiation saturation effect on biomass conversion efficiency;g.MJ-1;PARAM;1;real;0.05;0.15;1;0
coefdevil;multiplier coefficient of the outdoor radiation to calculate PET inside of a greenhouse;SD;STATION;1;real;0.3;1.2;1;0
coefdrpmat;multiplier coefficient applied to the thermal time requirement between stages DRP and MAT;SD;PARPLT;1;real;1;2;1;0
coefflodrp;multiplier coefficient applied to the thermal time requirement between stages FLO and DRP;SD;PARPLT;1;real;1;2;1;0
coeflaxsen;multiplier coefficient applied to the thermal time requirement between stages LAX and SEN;SD;PARPLT;1;real;1;2;1;0
coeflevamf;multiplier coefficient applied to the thermal time requirement between stages LEV and AMF;SD;PARPLT;1;real;1;2;1;0
coeflevdrp;multiplier coefficient applied to the thermal time requirement between stages LEV and DRP;SD;PARPLT;1;real;1;2;1;0
coefmshaut;ratio of crop biomass to useful cutting height of crops ;t.ha-1.m-1;PARPLT;1;real;2;50;1;0
coefracoupe;proportion of roots dying after a cut of a forage crop;SD;PARPLT;1;real;0.001;1;1;0
coefrnet;coefficient applied to the (outdoor) net radiation to calculate the net radiation under a greenhouse;SD;STATION;1;real;0.001;1;1;0
coefsenlan;multiplier coefficient applied to the thermal time requirement between stages SEN and LAN;SD;PARPLT;1;real;1;2;1;0
concirr;concentration of mineral N (NH4+NO3-N) in irrigation water;kg.ha-1 mm-1;PARTEC;1;real;0;0.2;1;0
concNnodseuil;maximal concentration of mineral N in soil for nodule onset ;kg.ha-1.mm-1;PARPLT;1;real;0;10;1;0
concNrac;nitrate-N concentration (if codefxN=3) or nitrate-N amount (if codefxN=2) above which N fixation is totally inhibited;kg.ha-1.mm-1 or kg.ha-1.cm-1;PARPLT;1;real;0;10;1;0
concNrac0;nitrate-N concentration (if codefxN=3) or nitrate-N amount (if codefxN=2) above which N fixation is totally inhibited;kg.ha-1.mm-1 or kg.ha-1.cm-1;PARPLT;1;real;0;10;1;0
concNrac100;nitrate-N concentration (if codefxN=3) or nitrate-N amount (if codefxN=2) below which N fixation is maximum;kg.ha-1.mm-1 or kg.ha-1.cm-2;PARPLT;1;real;0;2;1;0
concrr;concentration of mineral N (NH4+NO3-N) in the rain;kg.ha-1 mm-1;STATION;1;real;0;3;1;0
concseuil;minimum concentration of NO3-N in soil (unavailable for leaching and for uptake);kg.ha-1 mm-1;PARSOL;1;real;0;0.5;1;0
contrdamax;maximal reduction factor applied to root growth rate due to soil strengthness (high bulk density);SD;PARPLT;1;real;0;1;1;0
corecTrosee;temperature to substract to Tmin to estimate dew point temperature (in case of missing air humidity data);degree_C;STATION;1;real;-5;5;1;0
couvermulchplastique;fraction of soil covered by the plastic mulch ;SD;PARTEC;1;real;0;1;1;0
Crespc;C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0
Crespc_pature;C content in animal feces (FW);%;PARAMV6;1;real;0;100;1;0
Crespc(1);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0
Crespc(10);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0
Crespc(11);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0
Crespc(2);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0
Crespc(3);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0
Crespc(4);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0
Crespc(5);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0
Crespc(6);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0
Crespc(7);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0
Crespc(8);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0
Crespc(9);C content in organic residue (DW);%;PARTEC;11;real;0;100;1;0
CroCo;fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(1);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(10);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(11);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(12);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(13);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(14);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(15);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(16);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(17);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(18);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(19);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(2);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(20);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(21);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(3);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(4);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(5);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(6);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(7);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(8);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
CroCo(9);fraction of organic residue which is decomposable;SD;PARAM;21;real;0;1;1;0
croirac;elongation rate of the root apex;cm.degree_d-1;PARPLT;1;real;0;0.5;1;1
CsurNres;C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0
CsurNres(1);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0
CsurNres(10);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0
CsurNres(11);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0
CsurNres(2);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0
CsurNres(3);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0
CsurNres(4);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0
CsurNres(5);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0
CsurNres(6);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0
CsurNres(7);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0
CsurNres(8);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0
CsurNres(9);C/N ratio of residue;g.g-1;PARTEC;11;real;4;300;1;0
CsurNsol;Initial C to N ratio of soil humus;g.g-1;PARSOL;1;real;8;20;1;0
CsurNsol0;Initial C to N ratio of soil humus;g.g-1;PARSOL;1;real;8;20;1;0
culturean;number of calendar years involved in the crop cycle (1 = 1 year e.g. for spring crops, 2 = two years, e.g. for winter crops);SD;USM/USMXML;1;integer;1;2;1;0
cvent;parameter of the climate calculation under shelter;SD;STATION;1;real;0.001;1;1;0
cwb;minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(1);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(10);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(11);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(12);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(13);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(14);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(15);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(16);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(17);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(18);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(19);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(2);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(20);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(21);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(3);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(4);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(5);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(6);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(7);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(8);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
cwb(9);minimum ratio C/N of microbial biomass decomposing organic residues;g.g-1;PARAM;21;real;5;60;1;0
dachisel;bulk density of soil after soil tillage (Chisel);g.cm-3;PARTEC;1;real;0.8;1.7;1;0
dacohes;bulk density of soil below which root growth is reduced due to a lack of soil cohesion;g.cm-3;PARAM;1;real;0.001;1.4;1;0
DAF;bulk density of fine earth fraction in each soil layer;g.cm-3;PARSOL;5;real;0.8;2;1;0
DAF(1);bulk density of fine earth fraction in each soil layer;g.cm-3;PARSOL;5;real;0.8;2;1;0
DAF(2);bulk density of fine earth fraction in each soil layer;g.cm-3;PARSOL;5;real;0.8;2;1;0
DAF(3);bulk density of fine earth fraction in each soil layer;g.cm-3;PARSOL;5;real;0.8;2;1;0
DAF(4);bulk density of fine earth fraction in each soil layer;g.cm-3;PARSOL;5;real;0.8;2;1;0
DAF(5);bulk density of fine earth fraction in each soil layer;g.cm-3;PARSOL;5;real;0.8;2;1;0
dalabour;bulk density of soil after full inversion tillage (plough);g.cm-3;PARTEC;1;real;0.8;2;1;0
darecolte;bulk density of soil after harvest;g.cm-3;PARTEC;1;real;0.8;2;1;0
dasemis;bulk density of soil after sowing;g.cm-3;PARTEC;1;real;0.8;2;1;0
daseuilbas;bulk density of soil above which root growth is maximal;g.cm-3;PARAM;1;real;1;1.4;1;0
daseuilhaut;bulk density of soil above which root growth becomes impossible;g.cm-3;PARAM;1;real;1.4;2.5;1;0
datedeb_irrigauto;starting date of automatic irrigations;julian_d;PARTEC;1;integer;1;731;1;0
datedebut;starting date of simulation;julian_d;USM/USMXML;1;integer;0;730;1;0
datefin;ending date of simulation;julian_d;USM/USMXML;1;integer;0;730;1;0
datefin_irrigauto;ending date of automatic irrigations;julian_d;PARTEC;1;integer;1;731;1;0
debsenrac;thermal time units defining the beginning of root senescence (root life time);degree_d;PARPLT;1;real;0;2000;1;0
deneng;maximal fraction of the mineral fertilizer that can be denitrified (used if codedenit is not activated);SD;PARAM;8;real;0;1;1;0
deneng(1);maximal fraction of the mineral fertilizer that can be denitrified (used if codedenit is not activated);SD;PARAM;8;real;0;1;1;0
deneng(2);maximal fraction of the mineral fertilizer that can be denitrified (used if codedenit is not activated);SD;PARAM;8;real;0;1;1;0
deneng(3);maximal fraction of the mineral fertilizer that can be denitrified (used if codedenit is not activated);SD;PARAM;8;real;0;1;1;0
deneng(4);maximal fraction of the mineral fertilizer that can be denitrified (used if codedenit is not activated);SD;PARAM;8;real;0;1;1;0
deneng(5);maximal fraction of the mineral fertilizer that can be denitrified (used if codedenit is not activated);SD;PARAM;8;real;0;1;1;0
deneng(6);maximal fraction of the mineral fertilizer that can be denitrified (used if codedenit is not activated);SD;PARAM;8;real;0;1;1;0
deneng(7);maximal fraction of the mineral fertilizer that can be denitrified (used if codedenit is not activated);SD;PARAM;8;real;0;1;1;0
deneng(8);maximal fraction of the mineral fertilizer that can be denitrified (used if codedenit is not activated);SD;PARAM;8;real;0;1;1;0
densinitial;initial root density in each of the five soil layers;cm.cm-3;INIT;5;real;0;10;1;0
densinitial(1);initial root density in each of the five soil layers;cm.cm-3;INIT;5;real;0;10;1;0
densinitial(2);initial root density in each of the five soil layers;cm.cm-3;INIT;5;real;0;10;1;0
densinitial(3);initial root density in each of the five soil layers;cm.cm-3;INIT;5;real;0;10;1;0
densinitial(4);initial root density in each of the five soil layers;cm.cm-3;INIT;5;real;0;10;1;0
densinitial(5);initial root density in each of the five soil layers;cm.cm-3;INIT;5;real;0;10;1;0
densitesem;plant sowing density ;pl.m-2;PARTEC;1;real;0.05;2000;1;0
deshydbase;rate of change of water content in fruits (FW) vs thermal time (>0 or <0);g.g-1.degree_d-1;PARPLT;1;real;-0.02;0.02;1;1
dfolbas;minimal foliar density within the considered shape;m2.m-3;PARPLT;1;real;1;10;1;0
dfolhaut;maximal foliar density within the considered shape;m2.m-3;PARPLT;1;real;1;10;1;0
dfpf;parameter of the first potential growth phase of fruit, corresponding to an exponential type function describing the cell division phase;SD;PARPLT;1;real;0.01;5;1;0
difN;diffusion coefficient of nitrate in soil at field capacity;cm2.d-1;PARAM;1;real;0.01;0.1;1;0
diftherm;soil thermal diffusivity;cm2.s-1;PARAM;1;real;0.001;0.01;1;0
distdrain;distance between mole drains;cm;PARAM;1;real;0;25000;1;0
DKmax;difference between the maximum and the minimum melting rates for snow;mm.degree_C-1.d-1;STATION;1;real;1;2;1;0
dlaimax;maximum rate of net daily increase of LAI;m2.pl-1.degree_d-1;PARPLT;1;real;5e-06;0.5;1;1
dlaimaxbrut;maximum rate of gross daily increase of LAI;m2.pl-1.degree_d-1;PARPLT;1;real;5e-06;0.5;1;1
dlaimin;accelerating parameter for the lai growth rate;SD;PARPLT;1;real;0;1;1;0
dltamsmaxsen;growth rate above which there is no more photoperiodic effect on senescence;t.ha-1.d-1;PARPLT;1;real;0.01;0.2;1;0
dltamsminsen;growth rate below which the photoperiodic effect on senescence is maximal;t.ha-1.d-1;PARPLT;1;real;0.01;0.2;1;0
doseI;daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(1);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(10);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(11);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(12);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(13);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(14);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(15);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(16);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(17);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(18);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(19);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(2);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(20);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(21);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(22);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(23);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(24);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(25);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(26);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(27);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(28);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(29);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(3);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(30);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(4);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(5);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(6);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(7);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(8);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseI(9);daily amount of irrigation water;mm.d-1;PARTEC;30;real;0;500;1;0
doseirrigmin;minimal amount of daily irrigation;mm.d-1;PARTEC;1;real;0;500;1;0
doseN;daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(1);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(10);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(11);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(12);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(13);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(14);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(15);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(16);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(17);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(18);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(19);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(2);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(20);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(3);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(4);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(5);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(6);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(7);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(8);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
doseN(9);daily amount of N added through fertilizers;kg.ha-1.d-1;PARTEC;20;real;0;500;1;0
dosimx;maximum amount of irrigation water applied daily (mode automatic irrigation);mm.d-1;PARTEC;1;real;10;500;1;0
dosimxN;maximum amount of fertiliser N applied daily (mode automatic fertilisation);kg.ha-1.d-1;PARAMV6;1;real;5;500;1;0
dpHvolmax;maximal pH increase following the application of slurry;SD;PARAM;1;real;0;3;1;0
draclong;maximum rate of root length production per plant;cm.pl-1.degree_d-1;PARPLT;1;real;1;1000;1;0
dureefruit;duration of the fruit between onset and physiological maturity;degree_d;PARPLT;1;real;10;2000;1;1
durvieF;maximal lifespan of an adult leaf expressed in summation of Q10=2 (2**(T-Tbase));SD;PARPLT;1;real;10;500;1;1
durviesupmax;relative additional lifespan due to N excess in plant (INN > 1);SD;PARPLT;1;real;0;1;1;0
E;snow compaction parameter;mm.mm-1.d-1;STATION;1;real;0;0.05;1;0
eau_mini_decisemis;minimum amount of rainfall required to start sowing (when codesemis is activated);mm;PARTEC;1;integer;0;40;1;0
eaures;water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0
eaures_pature;water content of animal feces deposited on soil during grazing (FW);%;PARAMV6;1;real;0;100;1;0
eaures(1);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0
eaures(10);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0
eaures(11);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0
eaures(2);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0
eaures(3);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0
eaures(4);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0
eaures(5);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0
eaures(6);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0
eaures(7);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0
eaures(8);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0
eaures(9);water content of organic residue (FW);%;PARTEC;11;real;0;99;1;0
ecartdrain;distance between mole drains;cm;PARSOL;1;real;100;5000;1;0
efcroijuv;maximum radiation use efficiency during the juvenile phase (LEV-AMF);g.MJ-1;PARPLT;1;real;1;7;1;0
efcroirepro;maximum radiation use efficiency during the grain filling phase (DRP-MAT);g.MJ-1;PARPLT;1;real;1;10;1;0
efcroiveg;maximum radiation use efficiency during the vegetative stage (AMF-DRP);g.MJ-1;PARPLT;1;real;1;10;1;0
effeuil;fraction of leaf removed by plant thinning;SD;PARTEC;1;real;0;1;1;0
effirr;irrigation efficiency;SD;PARTEC;1;real;0.2;1;1;0
efremobil;Efficiency of use of carbohydrates in storage organs of perennials;SD;PARPLT;1;real;0;1;1;0
elmax;maximum elongation of the coleoptile in darkness condition;cm;PARPLT;1;real;2;40;1;0
engamm;fraction of ammonium in the N fertilizer;SD;PARAM;8;real;0;1;1;0
engamm(1);fraction of ammonium in the N fertilizer;SD;PARAM;8;real;0;1;1;0
engamm(2);fraction of ammonium in the N fertilizer;SD;PARAM;8;real;0;1;1;0
engamm(3);fraction of ammonium in the N fertilizer;SD;PARAM;8;real;0;1;1;0
engamm(4);fraction of ammonium in the N fertilizer;SD;PARAM;8;real;0;1;1;0
engamm(5);fraction of ammonium in the N fertilizer;SD;PARAM;8;real;0;1;1;0
engamm(6);fraction of ammonium in the N fertilizer;SD;PARAM;8;real;0;1;1;0
engamm(7);fraction of ammonium in the N fertilizer;SD;PARAM;8;real;0;1;1;0
engamm(8);fraction of ammonium in the N fertilizer;SD;PARAM;8;real;0;1;1;0
engrais;fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engrais_pature;fertilizer type used to mimic urine excretion (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARAMV6;1;integer;1;8;1;0
engrais(1);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engrais(10);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engrais(2);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engrais(3);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engrais(4);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engrais(5);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engrais(6);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engrais(7);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engrais(8);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engrais(9);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engraiscoupe;fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engraiscoupe(1);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engraiscoupe(10);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engraiscoupe(2);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engraiscoupe(3);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engraiscoupe(4);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engraiscoupe(5);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engraiscoupe(6);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engraiscoupe(7);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engraiscoupe(8);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
engraiscoupe(9);fertilizer type (1=ammonium nitrate, 2=UAN solution, 3=urea, 4=anhydrous ammonia, 5=ammonium sulfate, 6=ammonium phosphate, 7=calcium nitrate, 8= fixed efficiency fertiliser);SD;PARTEC;10;integer;1;8;1;0
envfruit;fraction of envelop in grainmaxi;SD;PARPLT;1;real;0;0.5;1;0
epc;thickness of each soil layer;cm  ;PARSOL;5;real;1;1000;1;0
epc(1);thickness of each soil layer;cm  ;PARSOL;5;real;1;1000;1;0
epc(2);thickness of each soil layer;cm  ;PARSOL;5;real;1;1000;1;0
epc(3);thickness of each soil layer;cm  ;PARSOL;5;real;1;1000;1;0
epc(4);thickness of each soil layer;cm  ;PARSOL;5;real;1;1000;1;0
epc(5);thickness of each soil layer;cm  ;PARSOL;5;real;1;1000;1;0
epd;thickness of mixing cells in each soil layer ( = 2 * dispersion length);cm;PARSOL;5;integer;1;50;1;0
epd(1);thickness of mixing cells in each soil layer ( = 2 * dispersion length);cm;PARSOL;5;integer;1;50;1;0
epd(2);thickness of mixing cells in each soil layer ( = 2 * dispersion length);cm;PARSOL;5;integer;1;50;1;0
epd(3);thickness of mixing cells in each soil layer ( = 2 * dispersion length);cm;PARSOL;5;integer;1;50;1;0
epd(4);thickness of mixing cells in each soil layer ( = 2 * dispersion length);cm;PARSOL;5;integer;1;50;1;0
epd(5);thickness of mixing cells in each soil layer ( = 2 * dispersion length);cm;PARSOL;5;integer;1;50;1;0
extin;extinction coefficient of photosynthetic active radiation in the canopy;SD;PARPLT;1;real;0.1;1.5;1;1
fclim1;name of the first climate file;SD;USM/USMXML;1;character;;;0;0
fclim2;name of the second climate file;SD;USM/USMXML;1;character;;;0;0
fhminsat;relative soil mineralisation rate at water saturation;SD;PARAM;1;real;0;1;1;0
finert;initial fraction of inert pool in the soil organic pool  (= stable SON/ total SON);SD;PARSOL;1;real;0;1;1;0
finit;name of the initialisation file ;SD;USM/USMXML;1;character;;;0;0
fixmax;maximal N symbiotic fixation rate;kg.ha-1.d-1;PARPLT;1;real;2;12;1;0
fixmaxgr;maximal N symbiotic fixation rate per unit of grain growth rate;kg.t-1;PARPLT;1;real;0;50;1;0
fixmaxveg;maximal N symbiotic fixation rate per unit of vegetative growth rate;kg.t-1;PARPLT;1;real;0;50;1;0
flagecriture;option for writing the output files (1 = mod_history.sti, 2=daily outputs,4= report outputs, 8=balance outputs,16 = profile outputs,  32= debug outputs, 64 = screen outputs) sum them to have several types of outputs;SD;PARAM;1;integer;0;511;1;0
flai;name of the LAI file;SD;USM/USMXML;1;character;;;0;0
fNCbiomin;minimal value for the ratio N/C of the microbial biomass when N limits decomposition;g.g-1;PARAM;1;real;0.01;0.1;1;0
fNmindecmin;minimal fraction of mineral N available for residues decomposition (if codeNmindec is activated);SD;PARAMV6;1;real;0;1;1;0
fnx;maximum fraction of NH4 nitrified each day (first order model);SD;PARAM;1;real;0.01;1;1;0
fobs;name of the observed file;SD;USM/USMXML;1;character;;;0;0
forme;option to define the shape of leaf density profile: 1 = rectangle, 2 = triangle;code 1/2;PARPLT;1;integer;1;2;1;0
fplt;name of the plant file;SD;USM/USMXML;1;character;;;0;0
fracN;proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0
fracN(1);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0
fracN(10);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0
fracN(2);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0
fracN(3);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0
fracN(4);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0
fracN(5);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0
fracN(6);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0
fracN(7);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0
fracN(8);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0
fracN(9);proportion of fertiliser N applied at each application;%;PARTEC;10;real;5;100;1;0
fredkN;reduction factor of decomposition rate of organic residues when mineral N is limiting;SD;PARAM;1;real;0.1;1;1;0
fredlN;reduction factor of decomposition rate of microbial biomass when mineral N is limiting;SD;PARAM;1;real;0.2;1;1;0
fredNsup;additional reduction factor of residues decomposition rate when mineral N is highly limiting;SD;PARAM;1;real;0;1;1;0
fstation;name of the weather station file;SD;USM/USMXML;1;character;;;0;0
ftec;name of the technical file;SD;USM/USMXML;1;character;;;0;0
ftemh;parameter (1/2) of the temperature function on humus decomposition rate;K-1;PARAM;1;real;0.05;0.5;1;0
ftemha;parameter (2/2) of the temperature function on humus decomposition rate;SD;PARAM;1;real;10;50;1;0
ftemr;parameter (1/2) of the temperature function on decomposition rate of organic residues;K-1;PARAM;1;real;0.05;0.5;1;0
ftemra;parameter (2/2) of the temperature function on decomposition rate of organic residues;SD;PARAM;1;real;5;30;1;0
GMIN1;parameter (1/7) of the new mineralization function (Clivot et al, 2017);d-1;PARAM;1;real;0;1;1;0
GMIN2;parameter (2/7) of the new mineralization function (Clivot et al, 2017);-1%;PARAM;1;real;0;0.1;1;0
GMIN3;parameter (3/7) of the new mineralization function (Clivot et al, 2017);-1%;PARAM;1;real;0;0.1;1;0
GMIN4;parameter (4/7) of the new mineralization function (Clivot et al, 2017);pH-1;PARAM;1;real;0;1;1;0
GMIN5;parameter (5/7) of the new mineralization function (Clivot et al, 2017);pH;PARAM;1;real;3;11;1;0
GMIN6;parameter (6/7) of the new mineralization function (Clivot et al, 2017);g.g-1;PARAM;1;real;0;1;1;0
GMIN7;parameter (7/7) of the new mineralization function (Clivot et al, 2017);g.g-1;PARAM;1;real;5;35;1;0
gradtn;thermal gradient in altitude for minimal temperatures ;degree_C.100m-1;STATION;1;real;0.1;3;1;0
gradtninv;thermal gradient in altitude for minimal temperatures under the inversion level;degree_C.100m-1;STATION;1;real;0.1;3;1;0
gradtx;thermal gradient in altitude for maximal temperatures ;degree_C.100m-1;STATION;1;real;0.1;3;1;0
h2ofeuiljaune;water content of yellow leaves (FW);g.g-1;PARPLT;1;real;0.05;1;1;0
h2ofeuilverte;water content of green leaves (FW);g.g-1;PARPLT;1;real;0.5;1;1;0
h2ofrvert;water content of fruits before the beginning of dehydration (FW);g.g-1;PARPLT;1;real;0.1;1;1;0
h2ograinmax;maximal water content of fruits at harvest (FW);g.g-1;PARTEC;1;real;0.05;1;1;0
h2ograinmin;minimal water content of fruits at harvest (FW);g.g-1;PARTEC;1;real;0.05;1;1;0
h2oreserve;water content of crop reserve (FW);g.g-1;PARPLT;1;real;0.5;1;1;0
h2otigestruc;water content of structural stem part (FW);g.g-1;PARPLT;1;real;0.5;1;1;0
hautbase;basal height of crop;m;PARPLT;1;real;0.1;2;1;1
hautcoupe;cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(1);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(10);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(11);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(12);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(13);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(14);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(15);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(16);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(17);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(18);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(19);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(2);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(20);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(3);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(4);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(5);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(6);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(7);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(8);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupe(9);cut height for forage crops (calendar fixed);m;PARTEC;20;real;0.01;0.5;1;0
hautcoupedefaut;cut height for forage crops (calendar calculated);m;PARTEC;1;real;0.01;0.5;1;0
hautmax;maximum height of crop;m;PARPLT;1;real;0.1;5;1;1
hautmaxtec;maximal height of the plant allowed by the management;m;PARTEC;1;real;0.5;3;1;0
hautrogne;cutting height for trimmed plants;m;PARTEC;1;real;0.2;2;1;0
hcccx;gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0
hcccx(1);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0
hcccx(10);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0
hcccx(2);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0
hcccx(3);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0
hcccx(4);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0
hcccx(5);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0
hcccx(6);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0
hcccx(7);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0
hcccx(8);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0
hcccx(9);gravimetric water content at field capacity of each type of pebble (dry soil);%;PARAM;10;real;10;110;1;0
hccf;gravimetric water content at field capacity of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;10;110;1;0
hccf(1);gravimetric water content at field capacity of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;10;110;1;0
hccf(2);gravimetric water content at field capacity of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;10;110;1;0
hccf(3);gravimetric water content at field capacity of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;10;110;1;0
hccf(4);gravimetric water content at field capacity of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;10;110;1;0
hccf(5);gravimetric water content at field capacity of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;10;110;1;0
Hinitf;initial gravimetric water content of each soil layer (in fine earth, dry soil);%;INIT;5;real;5;110;1;0
Hinitf(1);initial gravimetric water content of each soil layer (in fine earth, dry soil);%;INIT;5;real;5;110;1;0
Hinitf(2);initial gravimetric water content of each soil layer (in fine earth, dry soil);%;INIT;5;real;5;110;1;0
Hinitf(3);initial gravimetric water content of each soil layer (in fine earth, dry soil);%;INIT;5;real;5;110;1;0
Hinitf(4);initial gravimetric water content of each soil layer (in fine earth, dry soil);%;INIT;5;real;5;110;1;0
Hinitf(5);initial gravimetric water content of each soil layer (in fine earth, dry soil);%;INIT;5;real;5;110;1;0
hminf;gravimetric water content at wilting point of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;2;25;1;0
hminf(1);gravimetric water content at wilting point of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;2;25;1;0
hminf(2);gravimetric water content at wilting point of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;2;25;1;0
hminf(3);gravimetric water content at wilting point of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;2;25;1;0
hminf(4);gravimetric water content at wilting point of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;2;25;1;0
hminf(5);gravimetric water content at wilting point of each soil layer (in fine earth, dry soil);%;PARSOL;5;real;2;25;1;0
hminm;relative water content (fraction of field capacity) below which mineralisation rate is nil;SD;PARAM;1;real;0;1;1;0
hminn;relative water content (fraction of field capacity) below which nitrification rate is nil;SD;PARAM;1;real;0;1;1;0
hoptm;relative water content (fraction of field capacity) above which mineralisation rate is maximum;SD;PARAM;1;real;0.2;1;1;0
hoptn;relative water content (fraction of field capacity) above which nitrification rate is maximum;SD;PARAM;1;real;0.2;1;1;0
huilerec;minimal oil content of fruits at harvest (FW);g.g-1;PARTEC;1;real;0.1;1;1;0
humcapil;threshold of soil gravimetric water content under which capillary rise occurs (dry soil);%;PARSOL;1;real;2;10;1;0
humirac;A revoir: 1 = la fonction F_humirac atteint un plateau (ancien code) / 2 = la fonction n atteint pas de plateau (identique a la phase germination-levee);SD;PARAMV6;1;integer;0;2;1;0
humirac_decisemis;relative soil moisture threshold above which sowing is possible (0 = no sensitivity to drought, 1 = highly sensitive);SD;PARTEC;1;real;0;1;1;0
iamf;day when the stage AMF is reached (999 if not reached);julian_d;PARTEC;1;integer;1;999;1;0
ichsl;soil number in the param.soil file;SD;USM;1;integer;1;999;1;0
idebdorm;day of the dormancy entrance;julian_d;PARPLT;1;integer;1;999;1;0
idor;day of the dormancy entrance;julian_d;java;1;integer;1;999;1;0
idrp;day of the stage DRP (beginning of grain filling) when the stage is observed (else 999);julian_d;PARTEC;1;integer;1;999;1;0
ifindorm;day of dormancy break;julian_d;PARPLT;1;integer;1;999;1;0
iflo;day of anthesis;julian_d;PARTEC;1;integer;1;999;1;0
ifwater;day of the end of simulation;julian_d;USM;1;integer;1;731;1;0
ilan;day when the stage LAN is reached (999 if not observed);julian_d;PARTEC;1;integer;1;999;1;0
ilax;day when the stage LAX is reached (999 if not observed);julian_d;PARTEC;1;integer;1;999;1;0
ilev;day when the stage LEV is reached (999 if not observed);julian_d;PARTEC;1;integer;1;999;1;0
imat;day when the stage MAT is reached (999 if not observed);julian_d;PARTEC;1;integer;1;999;1;0
infil;infiltrability rate at the base of each soil layer (if codemacropor = 1);mm.d-1;PARSOL;6;real;0.1;100;1;0
infil(1);infiltrability rate at the base of each soil layer (if codemacropor = 1);mm.d-1;PARSOL;6;real;0.1;100;1;0
infil(2);infiltrability rate at the base of each soil layer (if codemacropor = 1);mm.d-1;PARSOL;6;real;0.1;100;1;0
infil(3);infiltrability rate at the base of each soil layer (if codemacropor = 1);mm.d-1;PARSOL;6;real;0.1;100;1;0
infil(4);infiltrability rate at the base of each soil layer (if codemacropor = 1);mm.d-1;PARSOL;6;real;0.1;100;1;0
infil(5);infiltrability rate at the base of each soil layer (if codemacropor = 1);mm.d-1;PARSOL;6;real;0.1;100;1;0
infil(6);infiltrability rate at the base of each soil layer (if codemacropor = 1);mm.d-1;PARSOL;6;real;0.1;100;1;0
inflomax;maximal number of inflorescences per plant;SD;PARPLT;1;real;0;100;1;1
infrecouv;ulai at the stage AMF (maximal rate of leaf growth);SD;PARPLT;1;real;0;3;1;0
inilai;initial value of lai for cotyledons;m2.m-2;PARPLT;1;real;0;1;1;0
iniprofil;option of smoothing out the initial mineral N and water profiles (spline function): 0 = no, 1 = yes;SD;PARAM;1;integer;0;1;1;0
inngrain1;NNI below which net absorption of N during grain filling is maximal;SD;PARPLT;1;real;0.3;2;1;0
inngrain2;NNI above which net absorption of N during grain filling is nil ;SD;PARPLT;1;real;0.3;2;1;0
INNimin;INNI (instantaneous NNI) corresponding to INNmin;SD;PARPLT;1;real;0;1;1;0
INNmin;minimum value of NNI possible for the crop;SD;PARPLT;1;real;0;1;1;0
innsen;parameter of the N stress function active on senescence (INNsenes);SD;PARPLT;1;real;-2;1;1;1
innturgmin;parameter of the N stress function active on leaf expansion (INNLAI);SD;PARPLT;1;real;-2;1;1;0
interrang;width of the crop interrow;m;PARTEC;1;real;0;10;1;0
iplt;date of sowing;julian_d;java;1;integer;1;731;1;0
iplt0;date of sowing;julian_d;PARTEC;1;integer;1;731;1;0
irec;date of harvest;julian_d;PARTEC;1;integer;1;731;1;0
irecbutoir;latest date of harvest (imposed if the crop cycle is not finished at this date);julian_d;PARTEC;1;integer;1;731;1;0
irmax;maximum harvest index;SD;PARPLT;1;real;0.2;1;1;0
irrlev;amount of irrigation applied automatically on the sowing day to allow germination when the model calculates irrigation;mm;PARAM;1;real;0;50;1;0
isen;day when the stage SEN is reached (999 if not observed);julian_d;PARTEC;1;integer;1;731;1;0
isnu;date when the soil is bare;julian_d;java;1;integer;1;731;1;0
iwater;starting day of the simulation;julian_d;USM;1;integer;1;731;1;0
julapI;date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(1);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(10);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(11);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(12);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(13);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(14);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(15);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(16);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(17);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(18);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(19);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(2);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(20);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(21);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(22);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(23);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(24);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(25);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(26);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(27);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(28);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(29);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(3);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(30);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(4);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(5);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(6);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(7);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(8);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapI(9);date(s) of irrigation ;julian_d;PARTEC;30;integer;1;731;1;0
julapN;date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(1);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(10);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(11);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(12);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(13);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(14);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(15);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(16);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(17);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(18);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(19);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(2);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(20);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(3);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(4);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(5);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(6);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(7);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(8);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
julapN(9);date(s) of fertilizer application;julian_d;PARTEC;20;integer;1;731;1;0
juldes;day of perennial crop destruction;julian_d;PARTEC;1;integer;1;731;1;0
juleclair;day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0
juleclair(1);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0
juleclair(10);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0
juleclair(2);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0
juleclair(3);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0
juleclair(4);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0
juleclair(5);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0
juleclair(6);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0
juleclair(7);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0
juleclair(8);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0
juleclair(9);day of fruits removal;julian_d;PARTEC;10;integer;1;731;1;0
juleffeuil;day of leaf removal;julian_d;PARTEC;1;integer;1;731;1;0
julfauche;date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(1);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(10);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(11);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(12);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(13);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(14);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(15);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(16);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(17);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(18);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(19);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(2);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(20);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(3);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(4);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(5);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(6);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(7);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(8);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julfauche(9);date(s) of each cut for forage crops ;julian_d;PARTEC;20;integer;1;731;1;0
julouvre2;day (1/2) of opening the shelter;julian_d;PARTEC;1;integer;1;731;1;0
julouvre3;day (2/2) of opening the shelter;julian_d;PARTEC;1;integer;1;731;1;0
julres;date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0
julres(1);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0
julres(10);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0
julres(11);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0
julres(2);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0
julres(3);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0
julres(4);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0
julres(5);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0
julres(6);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0
julres(7);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0
julres(8);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0
julres(9);date(s) of organic residue addition to soil;julian_d;PARTEC;11;integer;1;731;1;0
julrogne;day of plant trimming;julian_d;PARTEC;1;integer;1;731;1;0
jultaille;day of pruning;julian_d;PARTEC;1;integer;1;731;1;0
jultrav;date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0
jultrav(1);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0
jultrav(10);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0
jultrav(11);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0
jultrav(2);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0
jultrav(3);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0
jultrav(4);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0
jultrav(5);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0
jultrav(6);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0
jultrav(7);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0
jultrav(8);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0
jultrav(9);date(s) of soil tillage;julian_d;PARTEC;11;integer;1;731;1;0
julvernal;day of initiation of vernalisation in perennial crops (between 1 and 365) ;julian_d;PARPLT;1;integer;1;731;1;0
jvc;number of vernalising  days or dormancy units;d;PARPLT;1;real;0;150;1;1
jvcmini;minimum number of vernalising days ;d;PARPLT;1;real;0;20;1;0
Kamm;affinity constant for NH4 in nitrification (if Michaelis_Menten formalism is used);mg.L-1;PARAM;1;real;1;100;1;0
kbio;potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(1);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(10);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(11);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(12);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(13);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(14);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(15);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(16);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(17);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(18);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(19);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(2);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(20);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(21);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(3);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(4);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(5);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(6);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(7);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(8);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kbio(9);potential decay rate of microbial biomass decomposing organic residues;d-1;PARAM;21;real;0;0.2;1;0
kcouvmlch;extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(1);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(10);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(11);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(12);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(13);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(14);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(15);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(16);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(17);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(18);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(19);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(2);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(20);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(21);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(3);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(4);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(5);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(6);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(7);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(8);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
kcouvmlch(9);extinction coefficient connecting the soil cover to the amount of plant mulch;SD;PARAM;21;real;0;1;1;0
Kd;Affinity constant for nitrate in denitrification;mg.L-1;PARAM;1;real;10;500;1;0
kdesat;rate constant of de-saturation ;d-1 ;PARAM;1;real;1;20;1;0
kdisrac;rate constant defining root length distribution throughout the profile;cm-2;PARPLT;1;real;2e-04;0.002;1;0
khaut;extinction coefficient connecting LAI to crop height;SD;PARPLT;1;real;0.2;2;1;1
Kmabs1;affinity constant of N uptake by roots for the fast uptake system;micromole.L-1;PARPLT;1;real;20;200;1;0
Kmabs2;affinity constant of N uptake by roots for the low uptake system;micromole.L-1;PARPLT;1;real;4000;40000;1;0
kmax;maximum crop coefficient for water requirements (= MET/PET);SD;PARPLT;1;real;0.5;4;1;0
Kmin;minimum snow melting rate on 21 December;mm.degree_C-1.d-1;STATION;1;real;1.5;2.5;1;0
krepracperm;parameter of biomass root partitioning : evolution of the ratio root/total (permanent trophic link);SD;PARPLT;1;real;1e-04;1;1;0
krepracseu;parameter of biomass root partitioning : evolution of the ratio root/total (trophic link by thresholds);SD;PARPLT;1;real;1e-04;1;1;0
ksol;soil hydraulic conductivity in the vicinity of mole drains;SD;PARSOL;1;real;1e-04;1;1;0
kstemflow;extinction coefficient connecting LAI to stemflow;SD;PARPLT;1;real;0.1;2;1;0
ktrou;extinction coefficient of PAR through the crop (used in the radiative transfer module);SD;PARPLT;1;real;0.1;2;1;1
lai;initial leaf area index;m2.m-2;INIT;1;real;0;10;1;0
lai0;initial leaf area index;m2.m-2;INIT;1;real;0;10;1;0
laicomp;LAI above which competition between plants starts;m2.m-2;PARPLT;1;real;0;1;1;0
laidebeff;LAI at the beginning of leaf removal;m2.m-2;PARTEC;1;real;1;10;1;0
laieffeuil;LAI removed from the crop at day juleffeuil;m2.m-2;PARTEC;1;real;0.05;10;1;0
laiplantule;LAI of plantlet at the plantation;m2.m-2;PARPLT;1;real;0;8;1;0
lairesiduel;residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(1);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(10);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(11);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(12);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(13);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(14);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(15);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(16);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(17);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(18);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(19);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(2);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(20);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(3);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(4);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(5);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(6);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(7);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(8);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
lairesiduel(9);residual LAI after each cut of forage crop;m2.m-2;PARTEC;20;real;0;2;1;0
largrogne;trimmed width;m;PARTEC;1;real;0.1;2;1;0
largtec;technical width;m;PARTEC;1;real;0.1;2;1;0
latitude;latitude of the site;degree;STATION;1;real;-90;90;1;0
locferti;soil depth at which fertiliser is applied;cm;PARTEC;1;integer;0;30;1;0
locirrig;soil depth at which irrigation is applied;cm;PARTEC;1;integer;0;30;1;0
longsperac;specific root length;cm.g-1;PARPLT;1;real;250;25000;1;0
lvfront;root density at the root apex;cm.cm-3;PARPLT;1;real;0.02;1;1;0
lvmax;maximum root length density in the top soil (used to calculate root mass);cm.cm-3;PARPLT;1;real;0;5;1;0
lvopt;root length density (RLD) above which water and N uptake are maximum and independent of RLD;cm.cm-3;PARAM;1;real;0.2;1;1;0
magrain;initial grain dry weight;g.m-2;INIT;1;real;0;5;1;0
magrain0;initial grain dry weight;g.m-2;INIT;1;real;0;5;1;0
maperenne;initial value of biomass of storage organs in perennial crops; t ha-1;INIT;1;real;0;30;1;0
maperenne0;initial value of biomass of storage organs in perennial crops; t ha-1;INIT;1;real;0;30;1;0
margerogne;topping occurs when plant height exceeds (hautrogne+margerogne) when automatic trimming is activated;m;PARTEC;1;real;0.01;1;1;0
masec;initial plant biomass (if the option to simulate N and C reserves is not activated);t.ha-1;INIT;1;real;0;10;1;0
masec0;initial plant biomass (if the option to simulate N and C reserves is not activated);t.ha-1;INIT;1;real;0;10;1;0
masecmeta;biomass of the plantlet supposed to be composed of metabolic N;t.ha-1;PARPLT;1;real;0.1;1;1;0
masecNmax;aerial biomass above which N dilution occurs (critical and maximal curves);t.ha-1;PARPLT;1;real;0.05;5;1;0
masecnp;initial aerial biomass;t.ha-1;INIT;1;real;0;10;1;0
masecnp0;initial aerial biomass;t.ha-1;INIT;1;real;0;10;1;0
masecplantule;initial shoot biomass of plantlet;t.ha-1;PARPLT;1;real;0.002;4;1;0
masvolcx;bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0
masvolcx(1);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0
masvolcx(10);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0
masvolcx(2);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0
masvolcx(3);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0
masvolcx(4);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0
masvolcx(5);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0
masvolcx(6);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0
masvolcx(7);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0
masvolcx(8);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0
masvolcx(9);bulk density of each type of pebble;g.cm-3;PARAM;10;real;0.5;5;1;0
max_pdenit;maximal value of the denitrification potential (if code_pdenit = 2);kg.ha-1.cm-1.d-1;PARAM;1;real;0;100;1;0
maxazorac;mineral N concentration in soil above which root growth is maximum ;kg.ha-1.cm-1;PARPLT;1;real;0.1;5;1;0
maxtalle;maximum tillers density  per soil area;nb.m-2;PARPLT;1;real;0;10000;1;0
min_pdenit;minimal value of the denitrification potential (if code_pdenit = 2);kg.ha-1.cm-1.d-1;PARAM;1;real;0;2;1;0
minazorac;mineral N concentration in soil below which root growth is reduced ;kg.ha-1.cm-1;PARPLT;1;real;0;5;1;0
minefnra;reduction factor on root growth when soil mineral N is limiting (< minazorac);SD;PARPLT;1;real;0;1;1;0
mouillabil;maximum wettability of leaves;mm.m-2;PARPLT;1;real;0.05;3;1;0
mouillabilmulch;maximum wettability of crop mulch;mm.t-1.ha;PARAM;5;real;0.05;5;1;0
mouillabilmulch(1);maximum wettability of crop mulch;mm.t-1.ha;PARAM;5;real;0.05;5;1;0
mouillabilmulch(2);maximum wettability of crop mulch;mm.t-1.ha;PARAM;5;real;0.05;5;1;0
mouillabilmulch(3);maximum wettability of crop mulch;mm.t-1.ha;PARAM;5;real;0.05;5;1;0
mouillabilmulch(4);maximum wettability of crop mulch;mm.t-1.ha;PARAM;5;real;0.05;5;1;0
mouillabilmulch(5);maximum wettability of crop mulch;mm.t-1.ha;PARAM;5;real;0.05;5;1;0
mscoupemini;minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(1);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(10);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(11);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(12);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(13);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(14);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(15);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(16);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(17);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(18);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(19);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(2);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(20);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(3);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(4);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(5);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(6);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(7);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(8);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
mscoupemini(9);minimum value of aerial biomass required to make a cut of forage crop;t.ha-1;PARTEC;20;real;1;10;1;0
msresiduel;residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(1);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(10);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(11);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(12);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(13);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(14);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(15);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(16);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(17);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(18);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(19);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(2);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(20);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(3);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(4);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(5);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(6);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(7);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(8);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
msresiduel(9);residual aerial biomass after a cut of a forage crop;t.ha-1;PARTEC;20;real;0;5;1;0
mulchbat;mulch depth at which a crust occurs (a value must be given but if in the plt.xml the vigueurbat parameter is equal to 1 then the parameter is inactive);cm;PARSOL;1;real;0;2;1;0
nbans;number of years for a simulation;years;USM;1;integer;1;100;1;0
nbcueille;number of fruit harvests during the crop cycle: 1 = one harvest, 2 = several harvests;code 1/2;PARTEC;1;integer;1;2;1;0
nbfeuilplant;leaf number per plant when planting;pl-1;PARPLT;1;integer;0;10;1;0
nbfgellev;leaf number at the end of the juvenile phase (frost sensitivity) ;pl-1;PARPLT;1;integer;1;5;1;0
nbgrmax;maximum number of fruits per surface area;m-2;PARPLT;1;real;0;1e+06;1;1
nbgrmin;minimum number of fruits per surface area;m-2 ;PARPLT;1;real;0;10000;1;1
nbinflo;imposed number of inflorescences per plant;pl-1;PARPLT;1;real;1;1000;1;1
nbinfloecl;number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0
nbinfloecl(1);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0
nbinfloecl(10);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0
nbinfloecl(2);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0
nbinfloecl(3);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0
nbinfloecl(4);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0
nbinfloecl(5);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0
nbinfloecl(6);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0
nbinfloecl(7);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0
nbinfloecl(8);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0
nbinfloecl(9);number of inflorescences or fruits removed at fruit removal ;pl-1;PARTEC;10;real;0;10;1;0
nbj_pr_apres_semis;number of days used to calculate rainfall requirement to start sowing (if codesemis is activated);d;PARTEC;1;integer;1;20;1;0
nbjgerlim;maximum number of days after grain imbibition allowing full germination;d;PARPLT;1;integer;1;50;1;0
nbjgrain;number of days used to compute the number of viable grains;d;PARPLT;1;integer;5;40;1;1
nbjmaxapresrecolte;maximum number of days allowed for harvest (if the soil compaction option is activated);d;PARTEC;1;integer;0;90;1;0
nbjmaxapressemis;maximum number of days allowed for sowing (if the soil compaction option is activated);d;PARTEC;1;integer;0;90;1;0
nbjoursrrversirrig;number of days during which rainfall is replaced by irrigation in the soil after a sowing poquet;d;PARAMV6;1;integer;0;0;1;0
nbjres;number of residue additions;SD;PARTEC;1;integer;0;8;1;0
nbjseuiltempref;number of days without frost for sowing (if sowing decision option is activated);d;PARTEC;1;integer;1;60;1;0
nbjtrav;number of tillage operations;SD;PARTEC;1;integer;0;8;1;0
nboite;number of boxes or age classes of fruits used to calculate fruit growth for undeterminate crops ;SD;PARPLT;1;integer;1;20;1;0
nbplantes;number of simulated plants;SD;USM/USMXML;1;integer;1;2;1;0
NH3ref;NH3 concentration in the atmosphere;microgram.m-3;STATION;1;real;0;10;1;0
nh4_min;minimum (fixed ?) NH4 concentration found in soil;mg.kg-1;PARAM;1;real;0;20;1;0
NH4initf;initial amount of NH4-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0
NH4initf(1);initial amount of NH4-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0
NH4initf(2);initial amount of NH4-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0
NH4initf(3);initial amount of NH4-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0
NH4initf(4);initial amount of NH4-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0
NH4initf(5);initial amount of NH4-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0
nlevlim1;number of days after germination after which plant emergence is reduced;d;PARPLT;1;integer;1;100;1;0
nlevlim2;number of days after germination after which plant emergence is impossible;d;PARPLT;1;integer;1;100;1;0
Nmeta;proportion of metabolic N in the plantlet;%;PARPLT;1;real;0;100;1;0
Nminres;proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0
Nminres_pature;proportion of N mineral content in animal feces (FW);%;PARAMV6;1;real;0;100;1;0
Nminres(1);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0
Nminres(10);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0
Nminres(11);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0
Nminres(2);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0
Nminres(3);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0
Nminres(4);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0
Nminres(5);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0
Nminres(6);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0
Nminres(7);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0
Nminres(8);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0
Nminres(9);proportion of mineral N content in organic residues (FW);%;PARTEC;11;real;0;30;1;0
NO3initf;initial amount of NO3-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0
NO3initf(1);initial amount of NO3-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0
NO3initf(2);initial amount of NO3-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0
NO3initf(3);initial amount of NO3-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0
NO3initf(4);initial amount of NO3-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0
NO3initf(5);initial amount of NO3-N in each of the soil layers (in fine earth);kg.ha-1;INIT;5;real;0;200;1;0
nom;name of the USM;SD;USM;1;character;;;0;0
nomsol;name of the soil;SD;USM/USMXML;1;character;;;0;0
Norg;soil organic N content in the first soil layer (constant down to the depth profhum, dry soil);%;PARSOL;1;real;0.05;0.5;1;0
Nreserve;maximal proportion of N in plant reserves (difference between the maximal and critical dilution curves);%;PARPLT;1;real;0;100;1;0
numsol;soil number;SD;PARSOL/USM;1;integer;0;1000;1;0
obstarac;soil depth at which root growth is stopped due to physical constraints;cm;PARSOL;1;real;10;1000;1;0
ombragetx;change in air temperature in the northern hillslope of mountains (activated if codadret=2);degree_C;STATION;1;real;-5;5;1;0
option_pature;option to activate grazing in pastures: 1 = yes, 2 = no;code 1/2;PARAMV6;1;integer;1;2;1;0
orgeng;maximal amount of fertilizer N that can be immobilized in the soil (fraction for type 8);kg.ha-1;PARAM;8;real;0;100;1;0
orgeng(1);maximal amount of fertilizer N that can be immobilized in the soil (fraction for type 8);kg.ha-1;PARAM;8;real;0;100;1;0
orgeng(2);maximal amount of fertilizer N that can be immobilized in the soil (fraction for type 8);kg.ha-1;PARAM;8;real;0;100;1;0
orgeng(3);maximal amount of fertilizer N that can be immobilized in the soil (fraction for type 8);kg.ha-1;PARAM;8;real;0;100;1;0
orgeng(4);maximal amount of fertilizer N that can be immobilized in the soil (fraction for type 8);kg.ha-1;PARAM;8;real;0;100;1;0
orgeng(5);maximal amount of fertilizer N that can be immobilized in the soil (fraction for type 8);kg.ha-1;PARAM;8;real;0;100;1;0
orgeng(6);maximal amount of fertilizer N that can be immobilized in the soil (fraction for type 8);kg.ha-1;PARAM;8;real;0;100;1;0
orgeng(7);maximal amount of fertilizer N that can be immobilized in the soil (fraction for type 8);kg.ha-1;PARAM;8;real;0;100;1;0
orgeng(8);maximal amount of fertilizer N that can be immobilized in the soil (fraction for type 8);kg.ha-1;PARAM;8;real;0;100;1;0
orientrang;direction of crop rows (relative to north);rad;PARTEC;1;real;0;6.28;1;0
parazofmorte;C/N ratio of dead leaves  when crop NNI = 1;g.g-1;PARPLT;1;real;10;20;1;0
Parazoper;C/N ratio of perennial organs  when crop NNI = 1;g.g-1;PARPLT;1;real;10;50;1;0
parazorac;C/N ratio of roots when crop NNI = 1;g.g-1;PARPLT;1;real;10;50;1;0
ParazoTmorte;C/N ratio of dead stems when crop NNI = 1;g.g-1;PARPLT;1;real;10;250;1;0
parsurrg;fraction of photosynthetically active radiation in global radiation  (PAR/RG);SD;PARAM;1;real;0.4;0.6;1;0
patm;atmospheric pressure;hPa;STATION;1;real;800;1200;1;0
penterui;runoff coefficient taking into account the plant mulch;SD;PARSOL;1;real;0;5;1;0
pentinflores;parameter used to calculate the inflorescences number ;kg-1;PARPLT;1;real;0;10;1;1
pentlaimax;parameter of the logistic curve of LAI growth ;SD;PARPLT;1;real;0;10;1;0
pentrecouv;parameter of the logistic curve of soil cover rate;SD;PARPLT;1;real;0;10;1;0
pertes_restit_ext;fraction of animal feces and urine not returned in grazed paddocks (e.g. in resting area, milking parlour, housing and paths/roads);SD;PARAMV6;1;real;0;1;1;0
pgrainmaxi;maximum grain weight (at 0% water content);g;PARPLT;1;real;0;5;1;1
pH;Initial soil pH (water solution);pH;PARSOL;1;real;4;9;1;0
pH0;Initial soil pH (water solution);pH;PARSOL;1;real;4;9;1;0
phiv;parameter allowing the calculation of the climate under shelter;SD;STATION;1;real;0;0.01;1;0
phiv0;parameter allowing the calculation of the climate under shelter;SD;STATION;1;real;0;0.01;1;0
pHmaxden;pH beyond which the N2O molar fraction in the denitrification process is minimum (<= ratiodenit);pH;PARAM;1;real;6;10;1;0
pHmaxnit;soil pH above which nitrification rate is maximum;pH;PARAM;1;real;6;9;1;0
pHmaxvol;soil pH above which NH3 volatilisation derived from fertiliser is maximum;pH;PARAM;1;real;6;9;1;0
pHminden;pH below which the N2O molar fraction in the denitrification process is maximum (100% );pH;PARAM;1;real;3;6.5;1;0
pHminnit;soil pH below which nitrification is nil;pH;PARAM;1;real;3;6;1;0
pHminvol;soil pH below which NH3 volatilisation derived from fertiliser is nil;pH;PARAM;1;real;3;6;1;0
phobase;basal photoperiod ;hours;PARPLT;1;real;0;24;1;1
phobasesen;photoperiod under which the photoperiodic stress affects the lifespan of leaves;hours;PARPLT;1;real;1;12;1;0
phosat;saturating photoperiod;hours;PARPLT;1;real;0;24;1;1
pHvols;parameter used to calculate the variation of soil pH after the addition of slurry;pH;PARAM;1;real;5;9;1;0
phyllotherme;thermal duration between the apparition of two successive leaves on the main stem;degree_d;PARPLT;1;real;10;150;1;0
plNmin;minimal amount of rain required to start an automatic N fertilisation;mm.d-1;PARAM;1;real;5;30;1;0
pluiebat;minimal amount of rain required to create a soil crust (a value must be given but if in the plt.xml the vigueurbat parameter is equal to 1 then the parameter is inactive);mm.d-1;PARSOL;1;real;5;100;1;0
pminruis;minimal amount of rain required to produce runoff ;mm.d-1;PARAM;1;real;2;50;1;0
Pns;density of the new snow;kg.m-3;STATION;1;real;10;200;1;0
potgermi;soil water potential below which seed imbibition is impeded;MPa;PARPLT;1;real;-4.2;-0.1;1;0
primingmax;maximum priming ratio (relative to SOM decomposition rate);SD;PARAM;1;real;1;5;1;0
prof;snow cover threshold for snow insulation;cm;STATION;1;real;5;15;1;0
profdenit;soil depth at which denitrification is active (if codedenit is activated);cm;PARSOL;1;real;10;40;1;0
profdrain;depth of mole drains;cm;PARSOL;1;real;20;200;1;0
profhum;maximum soil depth with an active biological activity;cm;PARSOL;1;real;10;150;1;0
profhumrecolteuse;soil depth at which moisture is considered to allow harvesting (if soil compaction is activated);cm;PARTEC;1;real;0;100;1;0
profhumsemoir;soil depth at which moisture is considered to allow sowing (if soil compaction is activated);cm;PARTEC;1;real;0;100;1;0
profimper;upper depth of the impermeable layer (from the soil surface);cm;PARSOL;1;real;50;200;1;0
proflabour;minimal soil depth for ploughing (if soil compaction is activated);cm;PARAM;1;real;0;100;1;0
profmes;depth of measurement of the soil water reserve;cm;PARTEC;1;real;10;1000;1;0
profnod;maximum depth at which N2 fixation by legume crops is possible;cm;PARPLT;1;real;10;50;1;0
profres;upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0
profres(1);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0
profres(10);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0
profres(11);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0
profres(2);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0
profres(3);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0
profres(4);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0
profres(5);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0
profres(6);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0
profres(7);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0
profres(8);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0
profres(9);upper depth of organic residue incorporation ;cm;PARTEC;11;real;0;30;1;0
profsem;depth of sowing;cm;PARTEC;1;real;0;10;1;0
proftrav;maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0
proftrav(1);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0
proftrav(10);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0
proftrav(11);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0
proftrav(2);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0
proftrav(3);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0
proftrav(4);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0
proftrav(5);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0
proftrav(6);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0
proftrav(7);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0
proftrav(8);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0
proftrav(9);maximum depth affected by soil tillage;cm;PARTEC;11;real;0;50;1;0
proftravmin;minimal soil depth for chisel tillage (if soil compaction is activated);cm;PARAM;1;real;0;100;1;0
prophumtassrec;soil moisture content (fraction of field capacity) above which compaction may occur and delay harvest;SD;PARAM;1;real;0.8;1.8;1;0
prophumtasssem;soil moisture content (fraction of field capacity) above which compaction may occur and delay sowing;SD;PARAM;1;real;0.8;1.8;1;0
propjgermin;minimal fraction of the duration nbjgerlim when the temperature is higher than the temperature threshold Tdmax ;%;PARPLT;1;real;0;1;1;0
proprac;ratio of root mass to aerial mass at harvest;SD;PARAM;1;real;0.05;0.5;1;0
propracfmax;fraction of fine roots emitted in the layer 0-1 cm (in length, maximum value over the root profile);SD;PARPLT;1;real;0.51;0.95;1;0
Propres;maximal fraction of the biomass reserves that can be mobilized from aerial organs in all crops;SD;PARPLT;1;real;0;1;1;0
propresP;maximal fraction of the biomass reserves that can be mobilized from storage organs in perennials;SD;PARPLT;1;real;0;1;1;0
PropresPN;maximal fraction of the N reserves that can be mobilized from storage organs in perennials;SD;PARPLT;1;real;0;1;1;0
ps;initial density of the snow cover;kg m-3;INIT;1;real;10;1000;1;0
ps0;initial density of the snow cover;kg m-3;INIT;1;real;10;1000;1;0
psihucc;soil water potential corresponding to field capacity ;MPa;PARAM;1;real;-5;-0.1;1;0
psihumin;soil water potential corresponding to wilting point;MPa;PARAM;1;real;-5;-0.1;1;0
psisto;potential of stomatal closing (absolute value);bars;PARPLT;1;real;1;25;1;1
psiturg;potential of the beginning of decrease of the cellular extension (absolute value);bars;PARPLT;1;real;1;15;1;1
q;cumulative soil evaporation above which evaporation rate is decreased ;mm;PARSOL;1;real;0;50;1;0
q0;cumulative soil evaporation above which evaporation rate is decreased ;mm;PARSOL;1;real;0;50;1;0
q10;Q10 used for the dormancy break calculation ;SD;PARPLT;1;real;1.5;3.5;1;0
qmulchdec;maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(1);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(10);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(11);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(12);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(13);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(14);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(15);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(16);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(17);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(18);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(19);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(2);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(20);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(21);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(3);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(4);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(5);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(6);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(7);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(8);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchdec(9);maximal amount of decomposable mulch;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis;amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0;amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(1);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(10);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(11);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(12);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(13);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(14);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(15);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(16);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(17);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(18);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(19);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(2);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(20);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(21);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(3);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(4);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(5);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(6);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(7);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(8);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
qmulchruis0(9);amount of mulch above which runoff is suppressed;t.ha-1;PARAM;21;real;0;5;1;0
QNperenne;initial value of nitrogen amount in storage organs in perennial crops ;kg ha-1;INIT;1;real;0;500;1;0
QNperenne0;initial value of nitrogen amount in storage organs in perennial crops ;kg ha-1;INIT;1;real;0;500;1;0
QNplante;initial N amount in the plant (if the option to simulate N and C reserves is not activated);t.ha-1;INIT;1;real;0;10;1;0
QNplante0;initial N amount in the plant (if the option to simulate N and C reserves is not activated);t.ha-1;INIT;1;real;0;10;1;0
QNplantenp;initial N amount in non-perennial organs of the plant;kg.ha-1;INIT;1;real;0;200;1;0
QNplantenp0;initial N amount in non-perennial organs of the plant;kg.ha-1;INIT;1;real;0;200;1;0
QNpltminINN;minimal amount of N in the plant required to compute INN;kg.ha-1;PARAM;1;real;0;50;1;0
qres;mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0
qres(1);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0
qres(10);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0
qres(11);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0
qres(2);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0
qres(3);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0
qres(4);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0
qres(5);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0
qres(6);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0
qres(7);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0
qres(8);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0
qres(9);mass of organic residues added to soil (fresh weight);t.ha-1;PARTEC;11;real;0;200;1;0
Qtot_N;total amount of mineral N fertilizer applications ;kg.ha-1;PARTEC;1;real;0;200;1;0
ra;aerodynamic resistance (used in volatilization module with the PET approach);s.m-1;STATION;1;real;10;70;1;0
rapdia;ratio of coarse roots diameter to fine roots diameter;SD;PARPLT;1;real;1;9.12;1;0
rapforme;ratio of thickness to width of the crop shape (negative when the base of the form < top);SD;PARPLT;1;real;-5;5;1;0
rapNmindec;slope of the linear relationship between the fraction of mineral N available for residue decomposition and the amount of C in decomposing residues;g.g-1;PARAMV6;1;real;0;0.01;1;0
rapsenturg;threshold soil water content active to simulate water senescence stress as a proportion of the turgor stress;SD;PARPLT;1;real;0.5;1.5;1;1
ratiodenit;fraction of N2O emitted per unit of N denitrified;SD;PARAM;1;real;0;1;1;0
ratiodurvieI;life span of early leaves expressed as a fraction of the life span of the last leaves emitted DURVIEF;SD;PARPLT;1;real;0;1;1;0
ratiol;water stress index below which irrigation is started in automatic mode (0 in manual mode);SD;PARTEC;1;real;0.2;1;1;0
ratiolN;nitrogen stress index below which fertilisation is started in automatic mode (0 in manual mode);SD;PARAMV6;1;real;0.2;1;1;0
rationit;fraction of N2O emitted per unit of N nitrified;SD;PARAM;1;real;0;1;1;0
ratiosen;fraction of senescent biomass (relative to total biomass);SD;PARPLT;1;real;0;1;1;0
rayon;average radius of the roots;cm ;PARPLT;1;real;0.005;0.07;1;0
rdrain;radius of the mole drains;cm;PARAM;1;real;1;100;1;0
remobres;fraction of daily remobilisable C reserves;d-1;PARPLT;1;real;0;0.5;1;0
repracpermax;maximum root biomass relative to total biomass (permanent trophic link);SD;PARPLT;1;real;0.1;0.9;1;0
repracpermin;minimum root biomass relative to total biomass (permanent trophic link);SD;PARPLT;1;real;0.1;0.9;1;0
repracseumax;maximum root biomass relative to total biomass (trophic link by thresholds);SD;PARPLT;1;real;0.1;0.9;1;0
repracseumin;minimum root biomass relative to total biomass (trophic link by thresholds);SD;PARPLT;1;real;0.1;0.9;1;0
resk;parameter 1/2 used to calculate profres (if code_auto_profres = 2): profres = proftrav *(1-exp(-resk.(proftrav-resz));cm-1;PARTEC;1;real;0.05;0.25;1;0
resplmax;maximal reserve of biomass;t.ha-1;PARPLT;1;real;0;100;1;0
ressuite;type of crop residue: roots / whole_crop / straw+roots / stubble+roots / prunings;SD;PARTEC;1;character;;;0;0
restemp;initial biomass of metabolic reserves in the perennial organs;t.ha-1;INIT;1;real;0;15;1;0
restemp0;initial biomass of metabolic reserves in the perennial organs;t.ha-1;INIT;1;real;0;15;1;0
restit;option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(1);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(10);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(11);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(12);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(13);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(14);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(15);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(16);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(17);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(18);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(19);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(2);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(20);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(3);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(4);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(5);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(6);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(7);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(8);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
restit(9);option of restitution in case of pasture yes (1), no (2);code 1/2;PARTEC;20;integer;1;2;1;0
resz;parameter 2/2 used to calculate profres (if code_auto_profres = 2): profres = proftrav *(1-exp(-resk.(proftrav-resz));cm;PARTEC;1;real;1;10;1;0
rsmin;minimal stomatal resistance of leaves;s.m-1;PARPLT;1;real;20;500;1;0
RTD;root tissue density;g.cm-3;PARPLT;1;real;0.05;0.8;1;0
rugochisel;roughness length of bare soil after chisel tillage (if soil compaction is activated);m;PARTEC;1;real;0.01;0.2;1;0
rugolabour;roughness length of bare soil after mouldboard ploughing (if soil compaction is activated);m;PARTEC;1;real;0.01;0.2;1;0
ruisolnu;fraction of runoff (relative to total rainfall) in a bare soil ;SD;PARSOL;1;real;0;1;1;0
scale_tdenitopt;parameter related to the range of optimum temperature for denitrification;SD;PARAM;1;real;10;40;1;0
scale_tnitopt;parameter related to the range of optimum temperature for nitrification;SD;PARAM;1;real;5;30;1;0
Sdepth;initial snow cover depth;m;INIT;1;real;0;3;1;0
Sdepth0;initial snow cover depth;m;INIT;1;real;0;3;1;0
Sdry;initial water in solid state in the snow cover;mm;INIT;1;real;0;300;1;0
Sdry0;initial water in solid state in the snow cover;mm;INIT;1;real;0;300;1;0
sea;specific area of fruit envelops;cm2.g-1;PARPLT;1;real;0;300;1;0
sensanox;index of anoxia sensitivity (0 = insensitive, 1 = highly sensitive);SD;PARPLT;1;real;0;1;1;0
sensiphot;index of photoperiod sensitivity (1 = insensitive, 0 = highly sensitive);SD;PARPLT;1;real;0;1;1;1
sensrsec;index of root sensitivity to drought (1 = insensitive, 0 = highly sensitive);SD;PARPLT;1;real;0;1;1;0
separateurrapport;column separator in rapport.sti file;SD;PARAM;1;character;;;0;0
seuilLAIapex;maximal value of LAI+LAIapex when LAIapex is > 0;m2.m-2;PARPLT;1;real;0;10;1;0
seuilmortalle;relative transpiration threshold to calculate tiller mortality;mm.d-1;PARPLT;1;real;0;10;1;0
seuilreconspeupl;tiller density below which the entire population will not be regenerated;m-2;PARPLT;1;real;0;4000;1;0
sigmadistalle;parameter used for calculating tiller mortality (gamma law) ;SD;PARPLT;1;real;0;0.5;1;0
slamax;maximum SLA (specific leaf area) of green leaves;cm2.g-1;PARPLT;1;real;50;500;1;1
slamin;minimum SLA (specific leaf area) of green leaves;cm2.g-1;PARPLT;1;real;50;500;1;0
spfrmax;maximal sources/sinks value allowing the trophic stress calculation for fruit onset;SD;PARPLT;1;real;0.7;2;1;0
spfrmin;minimal sources/sinks value allowing the trophic stress calculation for fruit onset;SD;PARPLT;1;real;0;1;1;0
splaimax;maximal sources/sinks value allowing the trophic stress calculation for leaf growing;SD;PARPLT;1;real;0.7;2;1;0
splaimin;minimal value of ratio sources/sinks for the leaf growth ;SD;PARPLT;1;real;0.01;1;1;0
stade;crop stage at the beginning of simulation;SD;INIT;1;character;;;0;0
stade0;crop stage at the beginning of simulation;SD;INIT;1;character;;;0;0
stadebbchamf;equivalent stage in BBCH-scale (amf= maximum acceleration of leaf growth, end of juvenile phase) ;SD;PARPLT;1;character;;;0;0
stadebbchdebdes;equivalent stage in BBCH-scale (debdes= date of onset of water dynamics in harvested organs);SD;PARPLT;1;character;;;0;0
stadebbchdrp;equivalent stage in BBCH-scale (drp = starting date of filling of harvested organs);SD;PARPLT;1;character;;;0;0
stadebbchfindorm;equivalent stage in BBCH-scale (end of dormancy);SD;PARPLT;1;character;;;0;0
stadebbchflo;equivalent stage in BBCH-scale (flowering);SD;PARPLT;1;character;;;0;0
stadebbchger;equivalent stage in BBCH-scale (germination);SD;PARPLT;1;character;;;0;0
stadebbchlax;equivalent stage in BBCH-scale (lax = maximum leaf area index, end of leaf growth );SD;PARPLT;1;character;;;0;0
stadebbchlev;equivalent stage in BBCH-scale (emergence);SD;PARPLT;1;character;;;0;0
stadebbchmat;equivalent stage in BBCH-scale (maturity);SD;PARPLT;1;character;;;0;0
stadebbchnou;equivalent stage in BBCH-scale (fruit set);SD;PARPLT;1;character;;;0;0
stadebbchplt;equivalent stage in BBCH-scale (sowing);SD;PARPLT;1;character;;;0;0
stadebbchrec;equivalent stage in BBCH-scale (harvest);SD;PARPLT;1;character;;;0;0
stadebbchsen;equivalent stage in BBCH-scale (senescence);SD;PARPLT;1;character;;;0;0
stadecoupedf;stage of automatic cut for forage crops;SD;PARTEC;1;character;;;0;0
stage_end_irrigauto;phenological stage for ending automatic irrigations (plt, ger, lev, amf, lax, drp ,flo, sen, rec, mat, debdorm, findorm);SD;PARTEC;1;character;;;0;0
stage_start_irrigauto;phenological stage for starting automatic irrigations (plt, ger, lev, amf, lax, drp ,flo, sen, rec, mat, debdorm, findorm);SD;PARTEC;1;character;;;0;0
stamflax;cumulative thermal time between the stages AMF (maximum acceleration of leaf growth, end of juvenile phase)  and LAX (maximum leaf area index, end of leaf growth );degree_d;PARPLT;1;real;0;6000;1;1
stdnofno;cumulative thermal time between the beginning and the end of nodulation;degree_d;PARPLT;1;real;0;500;1;0
stdordebour;cumulative thermal time between the dormancy break and the bud break ;degree_d;PARPLT;1;real;0;20000;1;1
stdrpdes;cumulative thermal time between the DRP stage (starting date of filling of harvested organs) and DEBDES (date of onset of water dynamics in harvested organs);degree_d;PARPLT;1;real;0;900;1;1
stdrpmat;cumulative thermal time between the stages DRP (starting date of filling of harvested organs) and MAT (maturity);degree_d;PARPLT;1;real;0;2000;1;1
stdrpnou;cumulative thermal time between the stages DRP (starting date of filling of harvested organs) and NOU (end of  setting);degree_d;PARPLT;1;real;0;6000;1;1
stemflowmax;maximal fraction of rainfall flowing down along the stems ;SD;PARPLT;1;real;0;1;1;0
stflodrp;cumulative thermal time between FLO (anthesis) and DRP (starting date of filling of harvested organs) (only for indication);degree_d;PARPLT;1;real;0;500;1;1
stfnofvino;cumulative thermal time between the end of the nodulation and the end of the nodule life  ;degree_d;PARPLT;1;real;0;500;1;0
stlaxsen;cumulative thermal time between the stages LAX (maximum leaf area index, end of leaf growth ) and SEN (beginning of leaf senescence) ;degree_d;PARPLT;1;real;0;6000;1;1
stlevamf;cumulative thermal time between the stages LEV (emergence) and AMF (maximum acceleration of leaf growth, end of juvenile phase) ;degree_d;PARPLT;1;real;0;6000;1;1
stlevdno;cumulative thermal time between emergence and the beginning of nodulation ;degree_d;PARPLT;1;real;0;500;1;0
stlevdrp;cumulative thermal time between the stages LEV (emergence)  and DRP (starting date of filling of harvested organs);degree_d;PARPLT;1;real;0;6000;1;1
stoprac;stage when root growth stops (LAX= maximum leaf area index, end of leaf growth  or SEN=beginning of leaf senescence);SD;PARPLT;1;character;;;0;0
stpltger;cumulative thermal time allowing germination;degree_d;PARPLT;1;real;0;100;1;0
stressdev;maximum phasic delay allowed due to stresses ;SD;PARPLT;1;real;0.1;0.9;1;0
stsenlan;cumulative thermal time between the stages SEN (beginning of leaf senescence) and LAN;degree_d;PARPLT;1;real;0;6000;1;1
stubblevegratio;fraction of unharvested biomass stubble to vegetative biomass at harvest;SD;PARTEC;1;real;0;1;1;0
sucrerec;minimal sugar concentration at harvest (/ fresh matter);g.g-1 FW;PARTEC;1;real;1e-04;0.5;1;0
surfapex;equivalent surface of a transpiring apex;m2;PARPLT;1;real;0;1e-04;1;0
surfouvre1;relative area of the shelter opened the first day of opening;SD;PARTEC;1;real;0.1;0.8;1;0
surfouvre2;relative area of the shelter opened the second day of opening;SD;PARTEC;1;real;0.1;0.8;1;0
surfouvre3;relative area of the shelter opened the third day of opening;SD;PARTEC;1;real;0.1;0.8;1;0
Swet;initial water in liquid state in the snow cover;mm;INIT;1;real;0;300;1;0
Swet0;initial water in liquid state in the snow cover;mm;INIT;1;real;0;300;1;0
swfacmin;minimal value for drought stress index (turfac, swfac, senfac);SD;PARPLT;1;real;0;1;1;1
SWrf;degree day temperature index for snow refreezing;mm.degree_C-1.d-1;STATION;1;real;0;0.01;1;0
tauxexportfauche;fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(1);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(10);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(11);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(12);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(13);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(14);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(15);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(16);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(17);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(18);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(19);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(2);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(20);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(3);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(4);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(5);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(6);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(7);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(8);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxexportfauche(9);fraction of cut which is exported;SD;PARTEC;20;real;0;1;1;0
tauxmortresP;mortality rate of perennial organs ;d-1;PARPLT;1;real;0;0.5;1;0
tauxrecouvkmax;soil cover rate corresponding to the maximal crop coefficient for water requirement (plant surface / soil surface);m2.m-2;PARPLT;1;real;0.5;2;1;0
tauxrecouvmax;maximal soil cover rate (plant surface / soil surface);m2.m-2;PARPLT;1;real;0.5;2;1;0
tcmax;maximum temperature at which growth ceases;degree_C;PARPLT;1;real;10;50;1;0
tcmin;minimum temperature at which growth ceases;degree_C;PARPLT;1;real;-10;15;1;0
tcxstop;temperature beyond which foliar growth stops;degree_C;PARPLT;1;real;0;100;1;0
tdebgel;temperature below which frost affects plant growth;degree_C;PARPLT;1;real;-5;5;1;0
tdenitopt_gauss;optimum temperature for denitrification;degree_C;PARAM;1;real;0;60;1;0
tdmax;maximum temperature above which development stops;degree_C;PARPLT;1;real;15;40;1;0
tdmaxdeb;maximal temperature for hourly calculation of phasic duration between dormancy and bud breaks;degree_C;PARPLT;1;real;0;40;1;0
tdmin;minimum temperature below which development stops;degree_C;PARPLT;1;real;-10;15;1;0
tdmindeb;minimal thermal threshold for hourly calculation of phasic duration between dormancy and bud breaks;degree_C;PARPLT;1;real;0;40;1;0
tdoptdeb;optimal temperature for calculation of phasic duration between dormancy and bud breaks;degree_C;PARPLT;1;real;0;30;1;0
temax;maximal temperature above which plant growth stops;degree_C;PARPLT;1;real;15;40;1;0
temin;minimum temperature for development;degree_C;PARPLT;1;real;-10;15;1;1
tempdeshyd;increase in fruit dehydration rate due to the increase in crop temperature (Tcult-Tair);%.degree_C-1;PARPLT;1;real;1e-04;0.05;1;0
tempfauche;cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(1);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(10);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(11);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(12);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(13);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(14);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(15);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(16);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(17);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(18);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(19);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(2);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(20);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(3);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(4);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(5);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(6);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(7);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(8);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempfauche(9);cumulative thermal time between two cuts of forage crops ;degree_d;PARTEC;20;real;0;2000;1;0
tempnod1;temperature parameter (1/4) used to calculate N fixation by legumes  ;degree_C;PARPLT;1;real;-10;40;1;0
tempnod2;temperature parameter (2/4) used to calculate N fixation by legumes  ;degree_C;PARPLT;1;real;-10;40;1;0
tempnod3;temperature parameter (3/4) used to calculate N fixation by legumes  ;degree_C;PARPLT;1;real;-10;40;1;0
tempnod4;temperature parameter (4/4) used to calculate N fixation by legumes  ;degree_C;PARPLT;1;real;-10;40;1;0
teopt;optimal temperature (1/2) for plant growth;degree_C;PARPLT;1;real;10;30;1;1
teoptbis;optimal temperature (2/2) for plant growth;degree_C;PARPLT;1;real;10;30;1;0
tfroid;optimal temperature for vernalisation;degree_C;PARPLT;1;real;-5;10;1;0
tgelflo10;temperature resulting in 10% of frost damages on flowers and fruits;degree_C;PARPLT;1;real;-25;0;1;0
tgelflo90;temperature resulting in 90% of frost damages on flowers and fruits;degree_C;PARPLT;1;real;-25;0;1;0
tgeljuv10;temperature resulting in 10% of frost damage on LAI (juvenile stage);degree_C;PARPLT;1;real;-25;0;1;1
tgeljuv90;temperature resulting in 90% of frost damage on LAI (juvenile stage);degree_C;PARPLT;1;real;-25;0;1;0
tgellev10;temperature resulting in 10% of frost damages on plantlet;degree_C;PARPLT;1;real;-25;0;1;1
tgellev90;temperature resulting in 90% of frost damages on plantlet;degree_C;PARPLT;1;real;-25;0;1;0
tgelveg10;temperature resulting in 10% of frost damage on LAI (adult stage);degree_C;PARPLT;1;real;-25;0;1;1
tgelveg90;temperature resulting in 90% of frost damage on LAI (adult stage);degree_C;PARPLT;1;real;-25;0;1;0
tgmin;minimum temperature below which emergence is stopped;degree_C;PARPLT;1;real;-10;15;1;0
tigefeuil;ratio stem (structural part)/leaf;SD;PARPLT;1;real;0;3;1;1
tigefeuilcoupe;ratio stem (structural part)/leaf on the cutting day;SD;PARPLT;1;real;0;3;1;0
tletale;lethal temperature for the plant;degree_C;PARPLT;1;real;-30;-1;1;0
tmaxremp;maximal temperature above which grain filling stops;degree_C;PARPLT;1;real;10;40;1;0
tmaxseuil;maximum temperature when snow cover is higher than prof;degree_C;STATION;1;real;-0.5;0.5;1;0
Tmf;threshold temperature for snow melting;degree_C;STATION;1;real;0;1;1;0
tmin_mineralisation;minimal temperature  for decomposition of humified organic matter;degree_C;PARAM;1;;-3;0;1;0
tminremp;minimal temperature below which grain filling stops;degree_C;PARPLT;1;real;0;20;1;0
tminseuil;minimum temperature when snow cover is higher than prof;degree_C;STATION;1;real;-1;0;1;0
tnitmax;maximal temperature above which nitrification stops;degree_C;PARAM;1;real;30;50;1;0
tnitmin;minimal temperature below which nitrification stops;degree_C;PARAM;1;real;-10;20;1;0
tnitopt;optimal temperature (1/2) for nitrification;degree_C;PARAM;1;real;10;40;1;0
tnitopt_gauss;optimal temperature (1/2) for nitrification;degree_C;PARAM;1;real;0;50;1;0
tnitopt2;optimal temperature (2/2) for nitrification;degree_C;PARAM;1;real;20;45;1;0
transplastic;transmission coefficient of the plastic shelter;SD;PARTEC;1;real;0.3;0.9;1;0
trefh;reference temperature for decomposition of humified organic matter;degree_C;PARAM;1;real;-10;20;1;0
trefr;reference temperature for decomposition of organic residues;degree_C;PARAM;1;real;-10;20;1;0
trmax;maximum air temperature (tmax) above which all precipitation is assumed to be rain;degree_C;STATION;1;real;0.5;1.5;1;0
tsmax ;maximum air temperature (tmax) below which all precipitation is assumed to be snow;degree_C;STATION;1;real;-3;-0.5;1;0
tustressmin;water stress index (min(turfac,inns)) below which there is an extra LAI senescence;SD;PARPLT;1;real;0.3;1;1;0
typecailloux;Pebbles type: 1 = Beauce limestone1, 2 = Beauce limestone, 3 = Lutetian limestone, 4 = Lutetian Brackish marl and limestone, 5 = morainic gravels, 6 = unweathered flint, sandstone or granite, 7 = weathered granite, 8 = Jurassic limestone 9 = Pebbles from Magneraud;SD;PARSOL;5;integer;1;10;1;0
typecailloux(1);Pebbles type: 1 = Beauce limestone1, 2 = Beauce limestone, 3 = Lutetian limestone, 4 = Lutetian Brackish marl and limestone, 5 = morainic gravels, 6 = unweathered flint, sandstone or granite, 7 = weathered granite, 8 = Jurassic limestone 9 = Pebbles from Magneraud;SD;PARSOL;5;integer;1;10;1;0
typecailloux(2);Pebbles type: 1 = Beauce limestone1, 2 = Beauce limestone, 3 = Lutetian limestone, 4 = Lutetian Brackish marl and limestone, 5 = morainic gravels, 6 = unweathered flint, sandstone or granite, 7 = weathered granite, 8 = Jurassic limestone 9 = Pebbles from Magneraud;SD;PARSOL;5;integer;1;10;1;0
typecailloux(3);Pebbles type: 1 = Beauce limestone1, 2 = Beauce limestone, 3 = Lutetian limestone, 4 = Lutetian Brackish marl and limestone, 5 = morainic gravels, 6 = unweathered flint, sandstone or granite, 7 = weathered granite, 8 = Jurassic limestone 9 = Pebbles from Magneraud;SD;PARSOL;5;integer;1;10;1;0
typecailloux(4);Pebbles type: 1 = Beauce limestone1, 2 = Beauce limestone, 3 = Lutetian limestone, 4 = Lutetian Brackish marl and limestone, 5 = morainic gravels, 6 = unweathered flint, sandstone or granite, 7 = weathered granite, 8 = Jurassic limestone 9 = Pebbles from Magneraud;SD;PARSOL;5;integer;1;10;1;0
typecailloux(5);Pebbles type: 1 = Beauce limestone1, 2 = Beauce limestone, 3 = Lutetian limestone, 4 = Lutetian Brackish marl and limestone, 5 = morainic gravels, 6 = unweathered flint, sandstone or granite, 7 = weathered granite, 8 = Jurassic limestone 9 = Pebbles from Magneraud;SD;PARSOL;5;integer;1;10;1;0
typsol;soil type;SD;PARSOL;1;character;;;0;0
udlaimax;ulai from which the rate of leaf growth decreases ;SD;PARPLT;1;real;1;3;1;0
upvttapI;thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(1);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(10);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(11);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(12);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(13);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(14);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(15);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(16);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(17);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(18);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(19);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(2);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(20);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(21);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(22);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(23);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(24);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(25);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(26);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(27);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(28);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(29);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(3);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(30);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(4);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(5);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(6);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(7);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(8);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapI(9);thermal time from emergence (UPVT units) driving irrigation;degree_d;PARTEC;30;integer;0;200;1;0
upvttapN;thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(1);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(10);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(11);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(12);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(13);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(14);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(15);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(16);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(17);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(18);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(19);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(2);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(20);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(3);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(4);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(5);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(6);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(7);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(8);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
upvttapN(9);thermal time from emergence (UPVT units) driving fertilization;degree_d;PARTEC;20;integer;0;200;1;0
usm;name of the USM;SD;USMXML;1;character;;;0;0
Vabs2;N uptake rate at which fertilizer loss is divided by 2;kg.ha-1.d-1;PARAM;1;real;0.5;5;1;0
variete;cultivar number corresponding to the cultivar name in the plant file;SD;PARTEC;1;integer;1;200;1;0
vigueurbat;plant vigor index allowing to emerge through a soil crust ;SD;PARPLT;1;real;1e-04;1;1;0
vitirazo;rate of increase of the N harvest index vs time;g.g-1.d-1;PARPLT;1;real;0.001;0.04;1;1
vitircarb;rate of increase of the C harvest index vs time;g.g-1.d-1;PARPLT;1;real;0.001;0.02;1;1
vitircarbT;rate of increase of the C harvest index vs thermal time;g.g-1.degree_d-1;PARPLT;1;real;5e-05;0.002;1;1
vitno;rate of increase of the potential biological fixation rate after nodule onset, per unit of thermal time;nb.degree_d-1;PARPLT;1;real;0.001;0.01;1;0
vitprophuile;rate of increase of oil harvest index vs time;g.g-1.d-1;PARPLT;1;real;0.001;0.01;1;1
vitpropsucre;rate of increase of sugar harvest index vs time;g sugar.g-1.d-1;PARPLT;1;real;0.001;0.01;1;1
vitreconspeupl;rate of regeneration of the tiller population;degree_C-1;PARPLT;1;real;0;0.1;1;0
vlaimax;ulai at the inflexion point of the function DELTAI=f(ULAI);SD;PARPLT;1;real;1.5;2.5;1;0
Vmax1;maximum specific N uptake rate with the low affinity transport system;micromole.cm-1.h-1;PARPLT;1;real;2e-04;0.01;1;0
Vmax2;maximum specific N uptake rate with the high affinity transport system;micromole.cm-1.h-1;PARPLT;1;real;0.002;0.1;1;0
vnitmax;maximum nitrification rate (if Michaelis-Menten formalism is used);mg.kg-1.d-1;PARAM;1;real;0;100;1;0
voleng;maximal fraction of mineral fertilizer that can be volatilized ;SD;PARAM;8;real;0;1;1;0
voleng(1);maximal fraction of mineral fertilizer that can be volatilized ;SD;PARAM;8;real;0;1;1;0
voleng(2);maximal fraction of mineral fertilizer that can be volatilized ;SD;PARAM;8;real;0;1;1;0
voleng(3);maximal fraction of mineral fertilizer that can be volatilized ;SD;PARAM;8;real;0;1;1;0
voleng(4);maximal fraction of mineral fertilizer that can be volatilized ;SD;PARAM;8;real;0;1;1;0
voleng(5);maximal fraction of mineral fertilizer that can be volatilized ;SD;PARAM;8;real;0;1;1;0
voleng(6);maximal fraction of mineral fertilizer that can be volatilized ;SD;PARAM;8;real;0;1;1;0
voleng(7);maximal fraction of mineral fertilizer that can be volatilized ;SD;PARAM;8;real;0;1;1;0
voleng(8);maximal fraction of mineral fertilizer that can be volatilized ;SD;PARAM;8;real;0;1;1;0
vpotdenit;potential rate of denitrification for the whole denitrifying layer;kg.ha-1.d-1;PARSOL;1;real;0.3;10;1;0
wdata1;name of the first climate file;SD;USM;1;character;;;0;0
wdata2;name of the last climate file;SD;USM;1;character;;;0;0
wfpsc;WFPS (Water filled porosity space) threshold above which denitrification occurs;SD;PARAM;1;real;0.3;1;1;0
Wh;N/C ratio of soil humus;g.g-1;PARAM;1;real;0.05;0.14;1;0
Xorgmax;maximal amount of N immobilised in soil derived from the mineral fertilizer ;kg.ha-1;PARAM;1;real;100;500;1;0
y0msrac;minimal amount of root mass at harvest (when aerial biomass is nil);t.ha-1;PARAM;1;real;0;5;1;0
yres;Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(1);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(10);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(11);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(12);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(13);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(14);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(15);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(16);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(17);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(18);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(19);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(2);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(20);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(21);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(3);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(4);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(5);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(6);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(7);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(8);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
yres(9);Carbon assimilation yield by the microbial biomass during crop residues decomposition;SD;PARAM;21;real;0.3;0.7;1;0
z0solnu;roughness length of bare soil;m;PARSOL;1;real;0.01;0.2;1;0
zesx;maximal soil depth affected by soil evaporation;cm;PARSOL;1;real;10;150;1;0
zlabour;depth of ploughing (reference profile);cm;PARPLT;1;real;0;100;1;0
zpente;depth at which root density is 50% of the surface root density (reference profile);cm ;PARPLT;1;real;10;200;1;0
zprlim;maximum depth of the root profile (reference profile);cm ;PARPLT;1;real;10;200;1;0
zr;reference height of meteorological data measurement;m;STATION;1;real;2;10;1;0
zrac;initial depth of root apex of the crop;cm;INIT;1;real;0;200;1;0
zrac0;initial depth of root apex of the crop;cm;INIT;1;real;0;200;1;0
zracplantule;initial depth of root apex of the plantlet;cm;PARPLT;1;real;0;200;1;0